Home
Class 12
MATHS
IF A=[{:(3,-4),(1,-1):}] then show that...

IF `A=[{:(3,-4),(1,-1):}]` then show that `A^n=[{:(1+2n,-4n),(n,1-2n):}]` , for any integer `n ge1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

if A=[{:(3,-4),(1m,-1):}], then show that A^(n)=[{:(1+2n,-4n),(n,1-2n):}] is true for all natural values of n.

If A=[{:(3,-4),(1,-1):}] , then prove that A^(n)=[{:(1+2n,-4n),(n,1-2n):}] where n is any positive integer .

If A=[(3,-4),(1,-1)] , then prove that A^(n)=[(1+2n,-4n),(n,1-2n)] , where n is any positive integer.

If A=[(3,-4),(1,-1)] , prove by induction that A_n=[(1+2n,-4n),(n,1-2n)],n in N

if A =[(3,-4),( 1,-1)] then prove that A^n = [ ( 1+2n, -4n),( n,1-2n)] where n is any positive integer .

if A =[(3,-4),( 1,-1)] then prove that A^n = [ ( 1+2n, -4n),( n,1-2n)] where n is any positive integer .

If A= [(3 , -4), (1 , -1) ] , then prove that A^n=[(1+2n , -4n), (n , 1-2n) ] , where n is any positive integer.

If A=[[3,-4],[1,-1]] , then prove that A^n=[[1+2n,-4n],[n,1-2n]] , where n is any positive integer.

if A=[[3, -4],[ 1, (-1)]] , then prove that A^n=[[1+2 n, -4 n ],[n , 1-2n]] where n is any positive integer.