Home
Class 12
MATHS
If A, B, C are angles of a triangle , pr...

If A, B, C are angles of a triangle , prove that `sin 2A+sin 2B-sin 2C=4cos Acos B sin C`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B, C are the angles of a triangle, prove that sin2A+sin2B+sin2C=4sinAsinBsinC

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C

If A, B, C are angles in a triangle , prove that sin A+ sin B -sin C =4sin. (A)/(2)sin. (B)/(2) cos. (C)/(2)

If A, B, C are angles of a triangle , prove that cos 2A+cos 2B -cos 2C=1-4 sin A sin B cos C

If A, B, C are angles of a triangle, then S. T sin 2A -sin 2B + sin 2C=4 CosA sin B CosC

If A , B , C are angles in a triangle , then prove that sin A + sin B + sin C =4 cos. (A)/(2) cos . (B)/(2) cos .(C)/(2)

If A, B, C are angles of a triangle , prove that cos 2A - cos 2B + cos 2C =1 -4 sin A cos B sin C

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to