Home
Class 12
MATHS
If I (n)=int (0)^(pi) (sin (2nx))/(sin 2...

If `I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, ` then the value of `I _( n +(1)/(2))` is equal to `(n in I)`:

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^((pi)/(2))(sin^(2)nx)/(sin^(2)x)dx, then

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

If I_(n)=int(sin nx)/(sin x)dx, for n>1, then the value of I_(n)-I_(n-2) is

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

If I_(n)=int_(0)^(pi)x^(n). sin x dx then the value of I_(5)+ 20I_(3)=

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of lim_(n to oo) n(I_(n)+I_(n-2)) is -

Let I_(n)int_(0)^((pi)/(2))(sin x+cos x)^(n)dx(n>=2) Then the value of nI_(n)-2(n-1)I_(n-2) is