Home
Class 12
MATHS
If the line segment joining the points A...

If the line segment joining the points A(a,b) and B(c,d) subtends an angle `theta` at the origin, then `costheta` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If the line segment joining the points A(a,b) and B(a, -b) subtends an angle theta at the origin, show that cos theta = (a^2 - b^2)/(a^2 +b^2) .

If the line segment joining the points P (a,b) and Q(c,d) subtends an angle theta at the origin , then the value of costheta is a) (ab+cd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2))) b) (ab)/(sqrt(a^(2)+b^(2)))+(bd)/(sqrt(c^(2)+d^(2))) c) (ac+bd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2))) d) (ac-bd)/(sqrt(a^(2)+b^(2))sqrt(c^(2)+d^(2)))

If the line segment joining the point A(a,b) and B(c,d) subtends an angle theta at the origin.Prove that cos theta=(ac+bd)/(sqrt((a^(2)+b^(2))*(c^(2)+d^(2))))

If the line segment joining the points A(a,b) and B (c, d) subtends a right angle at the origin, show that ac+bd=0

If the segments joining the points A(a , b)a n d\ B(c , d) subtends an angle theta at the origin, prove that : costheta=(a c+b d)/(sqrt((a^2+b^2)(c^2+d^2)))

If the segments joining the points A(a , b)a n d\ B(c , d) subtends an angle theta at the origin, prove that : costheta=(a c+b d)/sqrt((a^2+b^2)(c^2+d^2))

If the segments joining the points A(a , b)a n d\ B(c , d) subtends an angle theta at the origin, prove that : cos theta=(a c+b d)/sqrt((a^2+b^2)(c^2+d^2))

If the segment joining the points (a,b),(c,d) subtends a right angle at the origin,then

If the segments joining the points A(a , b)a n d\ B(c , d) subtends an angle theta at the origin, prove that : theta=(a c+b d)/((a^2+b^2)(c^2+d^2))

If the segments joining the points A(a,b) and B(c,d) subtends an angle theta at the origin,prove that :theta=(ac+bd)/((a^(2)+b^(2))(c^(2)+d^(2)))