Home
Class 12
MATHS
Let f(x)=int(1)^(x)(3^(t))/(1+t^(2))dt, ...

Let `f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt`, where `xgt0`, Then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x)(log_(e)t)/(1+t)dt , where xgt0 , find the value of f(x)+f((1)/(x)) and hence show that, f(e)+f((1)/(e))=(1)/(2) .

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt, then

If I_(1)=int_(x)^(1)(1)/(1+t^(2))dt and I_(2)=int_(1)^(1//x)(1)/(1+t^(2))dt for xgt0 , then

Let F(x)=int_(0)^(x)(cost)/((1+t^(2)))dt,0lex le2pi . Then -

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=