Home
Class 11
MATHS
P is a point on the line y+2x=1, and Q...

`P` is a point on the line `y+2x=1,` and Q and R two points on the line `3y+6x=6` such that triangle `P Q R` is an equilateral triangle. The length of the side of the triangle is `2/(sqrt(5))` (b) `3/(sqrt(5))` (c) `4/(sqrt(5))` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

P is a point on the line y+2x=1, and Qa n dR two points on the line 3y+6x=6 such that triangle P Q R is an equilateral triangle. The length of the side of the triangle is

P is a point on the line y+2x=1, and Qa n dR two points on the line 3y+6x=6 such that triangle P Q R is an equilateral triangle. The length of the side of the triangle is

P is a point on the line y+2x=1, and Q and R are two points on the line 3y+6x=6 such that triangle P Q R is an equilateral triangle. The length of the side of the triangle is (a) 2/(sqrt(5)) (b) 3/(sqrt(5)) (c) 4/(sqrt(5)) (d) none of these

P is a point on the line y+2x=1, and Q and R two points on the line 3y+6x=6 such that triangle P Q R is an equilateral triangle. The length of the side of the triangle is (a) 2/(sqrt(5)) (b) 3/(sqrt(5)) (c) 4/(sqrt(5)) (d) none of these

P is a point on the line y+2x=1, and Qa n dR two points on the line 3y+6x=6 such that triangle P Q R is an equilateral triangle. The length of the side of the triangle is 2/(sqrt(5)) (b) 3/(sqrt(5)) (c) 4/(sqrt(5)) (d) none of these

P is a point on the line y+2x=1, and Q and R two points on the line 3y+6x=6 such that triangle PQR is an equilateral triangle.The length of the side of the triangle is (2)/(sqrt(5)) (b) (3)/(sqrt(5))(c)(4)/(sqrt(5))(d) none of these

Let P is a point on the line y+2x=2 and Q and R are two points on the line 3y+6x=3 . If the triangle PQR is an equilateral triangle, then its area (in sq. units) is equal to

Let P is a point on the line y+2x=2 and Q and R are two points on the line 3y+6x=3 . If the triangle PQR is an equilateral triangle, then its area (in sq. units) is equal to

The equation of the base of an equilateral triangle ABC is x+y=2 and the vertex is (2,-1). The area of the triangle ABC is: (sqrt(2))/(6) (b) (sqrt(3))/(6) (c) (sqrt(3))/(8) (d) None of these