Home
Class 12
MATHS
The two circles x^(2)+y^(2)=ax, x^(2)+y^...

The two circles `x^(2)+y^(2)=ax, x^(2)+y^(2)=c^(2) (c gt 0)` touch each other if

Promotional Banner

Similar Questions

Explore conceptually related problems

The two circles x^(2)+y^(2)=ax and x^(2)+y^(2)=c^(2)(c gt 0) touch each other, if |(c )/(a )| is equal to

The two circles x^(2)+y^(2)=ax and x^(2)+y^(2)=c^(2)(c gt 0) touch each other, if |(c )/(a )| is equal to

The two circles x^2+y^2=ax and x^2+y^2=c^2(c > 0) touch each other if (1) a=2c (2) |a|=2c (3) 2|a|=c (4) |a|=c

The two circles x^2+y^2=ax and x^2+y^2=c^2(c > 0) touch each other if (1) a=2c (2) |a|=2c (3) 2|a|=c (4) |a|=c

The two circles : x^2+y^2 =ax and x^2+y^2=c^2 (c > 0) touch each other if :

The two circles x^2+y^2=ax and x^2+y^2=c^2 (cgt0) touch each other if

The two circles x^2+""y^2=""a x and x^2+""y^2=""c^2(c"">""0) touch each other if : (1) 2|a|""=""c (2) |a|""=""c (3) a""=""2c (4) |a|""=""2c

The two circles x^2+""y^2=""a x and x^2+""y^2=""c^2(c"">""0) touch each other if : (1) 2|a|""=""c " " (2) |a|""=""c " " (3) a""=""2c " " (4) |a|""=""2c

If two circles x^(2)+y^(2)+c^(2)=2ax and x^(2)+y^(2)+c^(2)-2by=0 touch each other externally , then prove that (1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))