Home
Class 10
MATHS
" If "sqrt((x)/(y))+(y)/(x)=(10)/(3)" ,t...

" If "sqrt((x)/(y))+(y)/(x)=(10)/(3)" ,then "

Promotional Banner

Similar Questions

Explore conceptually related problems

if sqrt((x)/(y))+sqrt((y)/(x))=(10)/(3) and x+y=10, then the value of xy will be :

If sqrt((x)/(y)) =(10)/(3) - sqrt((y)/(x)) and x-y=8 , then the value of xy is equal to

The value of f(x,y)=((4sqrt(x^(3)y)-4sqrt(x^(3)))/(sqrt(y)-sqrt(x))+(1+sqrt(xy))/(4sqrt(xy)))^(-2)(1+2sqrt((y)/(x))+(y)/(x))^((1)/(2)) when x=9,y=0.04

The value of f(x,y)=((x^(3)y)^((1)/(4))-(y^(3)x)^((1)/(4)))/(sqrt(y)-sqrt(x))+(1+sqrt(xy))/((xy)^((1)/(4)))xx((1+2sqrt((y)/(x))+(y)/(x))^(4) when x=9 and y=0.04

sqrt((y^(3))/(x))times sqrt((y)/(x))=

If x-(2)/(sqrt(10)-sqrt(8)),y-(2)/(sqrt(10)+2sqrt(2)) , then (x-y)^(2) =

If sqrt(y-x)+sqrt(y+x)=1" then "(d^(3)y)/(dx^(3)) at x=1 is equal to

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is