Home
Class 9
MATHS
ABCD एक समांतर चतुर्भुज है तथा O इसके अन...

ABCD एक समांतर चतुर्भुज है तथा O इसके अन्तः क्षेत्र में स्थित कोई बिंदु है सिद्ध कीजिए कि
(i) `ar(DeltaAOB)+ar(DeltaCOD)=ar(DeltaBOC)+ar(DeltaAOD)`
(ii) `ar(DeltaAOB) +ar(DeltaCOD)=(1)/(2)ar("।।"^(gm)ABCD)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ABCD is a parallelogram,the prove that ar(ABD)=ar(BCD)=ar(ABC)=ar(ACD)=1/2ar(||^(gm)ABCD)

The area of the parallelogram ABCD is 90 CM^(2) . Find (i) ar (ABEF) (ii) ar (DeltaABD) (iii) ar (DeltaBEF)

The area of the parallelogram ABCD is 90 CM^(2) . Find (i) ar (ABEF) (ii) ar (DeltaABD) (iii) ar (DeltaBEF)

In the adjoining figure, P is the point in the interior of a parallelogram ABCD.Show that ar(DeltaAPB) ar(DeltaPCD) =1/2ar(||gm ABCD)

In the adjacent figure P is a point inside the parallelogram ABCD. Prove that ar (APB) + ar (PCD) = 1/(2) ar (ABCD)

In the given figure, ABCD and FECG are parallelograms equal in area. If ar(Delta AQE) = 12 cm^(2) , find ar(||gm FGBQ)

In the given figure, ABCD and FECG are parallelograms equal in area. If ar(Delta AQE) = 12 cm^(2) , find ar(||gm FGBQ)

P is a point in the interior of a parallelogram ABCD. Show that (i) ar (DeltaAPB) +ar (DeltaPCD)=1/2ar (ABCD) (ii) ar(DeltaAPD)+ar (DeltaPBC)=ar(DeltaAPB)+ar(DeltaPCD) (Hint : Throught , P draw a line parallel to AB)

P is a point in the interior of a parallelogram ABCD. Show that (i) ar (DeltaAPB) +ar (DeltaPCD)=1/2ar (ABCD) (ii) ar(DeltaAPD)+ar (DeltaPBC)=ar(DeltaAPB)+ar(DeltaPCD) (Hint : Throught , P draw a line parallel to AB)