Home
Class 12
CHEMISTRY
Niobium crystallizes in body - centered ...

Niobium crystallizes in body - centered cubic structure . If density is 8.55 g `cm^(-3)` , calculate atomic radius of niobium using its atomic mass 93 U .

Text Solution

Verified by Experts

Density = `8.55 g cm^(-3)`
Let length of the edge = a cm
Number of atoms per unit cell, Z = 2 (bcc)
Atomic mass, `M = 93 g mol^(-1)`
Density , `rho = (Z xx M)/(a^3 xx N_A)`
`8.55 g cm^(-3) = (2 xx (93 g mol^(-1)))/(a^3 xx (6.022 xx 10^(23) mol^(-1)))`
`:. " " a^3 = (2 xx (93 g mol^(-1)))/((8.55 g cm^(-3)) xx (6.022 xx 10^(23) mol^(-1)))`
`= 36.12 xx 10^(-24) cm^(3)`
Edge length, `a = (36.12 xx 10^(-24))^(1//3) = 3.306 xx 10^(-8) cm`
`= 3.306 xx 10^(-10) m`
Now, radius in body centred cubic, `r = (sqrt3)/(4) a`
`= (sqrt(3) xx 3.306 xx 10^(-10)m)/(4) = 1.431 xx 10^(-10) m`
`= 0.143 nm`.
Promotional Banner

Topper's Solved these Questions

  • SOLID STATE

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS|48 Videos
  • SOLID STATE

    MODERN PUBLICATION|Exercise CONCEPTUAL QUESTIONS 1|30 Videos
  • POLYMERS

    MODERN PUBLICATION|Exercise Competition file (OBJECTIVE TYPE QUESTIONS) (C. MULTIPLE CHOICE QUESTIONS)(Integer Type Questions)|6 Videos
  • SOLUTIONS

    MODERN PUBLICATION|Exercise UNIT PRACTICE TEST|14 Videos

Similar Questions

Explore conceptually related problems

Niobium crystallizes in body-centred cubic structure. If the density is 8.55 g cm^(-3) , calculate the atomic radius of niobium using its atomic mass 93 u .

Niobium crystallises in body-centred cubic structure. If the atomic radius is 143.1 pm, calculate the density of Niobium. (Atomic mass = 93u).

Niobium crystallises in body centred cubic structure. If the atomic radius is 143.1 pm, calculate the density of the element. (Atomic mass = 93 u)

The metal nickel crystallizes in a face centered cubic structure. Its density is 8.90 gm//cm^(3) . Calculate (a) the length of the edge of a unit cell. (b) the radius of nickel atom. (atomic weight of Ni = 58.89).

Lithium crystallizes as body centered cubic crystals. If the length of the side of unit cell is 350=pm, the atomic radius of lithium is: