Home
Class 12
CHEMISTRY
Chromium metal (atomic mass = 52) has bo...

Chromium metal (atomic mass = 52) has body centred cubic structure. The radius of chromium atom is 124.3 pm. Calculate the density of chromium metal.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the density of chromium metal with a body-centered cubic (BCC) structure, we will follow these steps: ### Step 1: Identify the parameters - Atomic mass (M) of chromium = 52 g/mol - Radius (R) of chromium atom = 124.3 pm = \(124.3 \times 10^{-12}\) m - Body-centered cubic structure (BCC) has Z = 2 (2 atoms per unit cell). ### Step 2: Calculate the edge length (A) of the unit cell For a BCC structure, the relationship between the radius (R) and the edge length (A) is given by: \[ A = \frac{4R}{\sqrt{3}} \] Substituting the value of R: \[ A = \frac{4 \times 124.3 \times 10^{-12}}{\sqrt{3}} = \frac{497.2 \times 10^{-12}}{1.732} \approx 287.07 \times 10^{-12} \text{ m} \] ### Step 3: Calculate the volume of the unit cell (A³) Now, we calculate the volume of the unit cell: \[ A^3 = (287.07 \times 10^{-12})^3 \approx 2.36 \times 10^{-33} \text{ m}^3 \] ### Step 4: Convert the volume to cm³ To convert from m³ to cm³, we use the conversion factor \(1 \text{ m}^3 = 10^6 \text{ cm}^3\): \[ A^3 \approx 2.36 \times 10^{-33} \text{ m}^3 \times 10^6 \approx 2.36 \times 10^{-27} \text{ cm}^3 \] ### Step 5: Use the density formula The formula for density (\(D\)) is given by: \[ D = \frac{Z \times M}{A^3 \times N_A} \] Where: - \(Z = 2\) (number of atoms per unit cell) - \(M = 52 \text{ g/mol}\) - \(N_A = 6.022 \times 10^{23} \text{ mol}^{-1}\) (Avogadro's number) Substituting the values: \[ D = \frac{2 \times 52}{2.36 \times 10^{-27} \times 6.022 \times 10^{23}} \] ### Step 6: Calculate the density Calculating the denominator: \[ 2.36 \times 10^{-27} \times 6.022 \times 10^{23} \approx 1.42 \times 10^{-3} \text{ g} \] Now substituting back into the density formula: \[ D \approx \frac{104}{1.42 \times 10^{-3}} \approx 7.30 \text{ g/cm}^3 \] ### Final Answer The density of chromium metal is approximately **7.30 g/cm³**. ---

To calculate the density of chromium metal with a body-centered cubic (BCC) structure, we will follow these steps: ### Step 1: Identify the parameters - Atomic mass (M) of chromium = 52 g/mol - Radius (R) of chromium atom = 124.3 pm = \(124.3 \times 10^{-12}\) m - Body-centered cubic structure (BCC) has Z = 2 (2 atoms per unit cell). ### Step 2: Calculate the edge length (A) of the unit cell ...
Promotional Banner

Topper's Solved these Questions

  • SOLID STATE

    MODERN PUBLICATION|Exercise REVISION EXERCISES (NUMERICAL PROBLEMS)(CBSE Qs)|6 Videos
  • SOLID STATE

    MODERN PUBLICATION|Exercise HOTS - HIGHER ORDER THINKING SKILLS (ADVANCED LEVEL)|12 Videos
  • SOLID STATE

    MODERN PUBLICATION|Exercise REVISION EXERCISES (LONG ANSWER QUESTIONS)|6 Videos
  • POLYMERS

    MODERN PUBLICATION|Exercise Competition file (OBJECTIVE TYPE QUESTIONS) (C. MULTIPLE CHOICE QUESTIONS)(Integer Type Questions)|6 Videos
  • SOLUTIONS

    MODERN PUBLICATION|Exercise UNIT PRACTICE TEST|14 Videos

Similar Questions

Explore conceptually related problems

A metal (atomic mass = 50 ) has a body centred cubic crystal structure. If the density of the metal is 5.96 g cm^(-3) , calculate the volume of the unit cell.

What is the atomic radius of the atom in body - centred cubic structure ?

Lithium metal has a body centred cubic lattice structure with edge length of unit cell 352 pm. Calculate the density of lithium metal (Given : Atomic mass of Li = 7 g mol^(-1) )

Niobium crystallises in body-centred cubic structure. If the atomic radius is 143.1 pm, calculate the density of Niobium. (Atomic mass = 93u).

Copper crystallises with face centred cubic unit cell . If the radius of copper atom is 127.8 pm , calculate the density of copper metal. (Atomic mass of Cu = 63.55 u and Avogadro's number N_(A) = 6.02 xx 10^(23) mol^(-1) )

Niobium crystallises in body centred cubic structure. If the atomic radius is 143.1 pm, calculate the density of the element. (Atomic mass = 93 u)