Home
Class 11
MATHS
If the third term in the expansion of (1...

If the third term in the expansion of `(1/x + x^(log_(10) x) )^5` is 100, find x .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the third term in the expansion of \( \left( \frac{1}{x} + x^{\log_{10} x} \right)^5 \) is equal to 100. ### Step-by-Step Solution: 1. **Identify the General Term**: The general term \( T_r \) in the expansion of \( (a + b)^n \) is given by: \[ T_{r+1} = \binom{n}{r} a^{n-r} b^r \] Here, \( a = \frac{1}{x} \), \( b = x^{\log_{10} x} \), and \( n = 5 \). 2. **Find the Third Term**: The third term \( T_3 \) corresponds to \( r = 2 \): \[ T_3 = \binom{5}{2} \left( \frac{1}{x} \right)^{5-2} \left( x^{\log_{10} x} \right)^2 \] Simplifying this: \[ T_3 = \binom{5}{2} \left( \frac{1}{x} \right)^3 \left( x^{\log_{10} x} \right)^2 \] \[ = 10 \cdot \frac{1}{x^3} \cdot x^{2 \log_{10} x} \] \[ = 10 \cdot \frac{x^{2 \log_{10} x}}{x^3} \] \[ = 10 \cdot x^{2 \log_{10} x - 3} \] 3. **Set the Third Term Equal to 100**: We know from the problem statement that \( T_3 = 100 \): \[ 10 \cdot x^{2 \log_{10} x - 3} = 100 \] Dividing both sides by 10: \[ x^{2 \log_{10} x - 3} = 10 \] 4. **Take Logarithm**: Taking logarithm base 10 on both sides: \[ \log_{10} \left( x^{2 \log_{10} x - 3} \right) = \log_{10} 10 \] \[ (2 \log_{10} x - 3) \log_{10} x = 1 \] Let \( \log_{10} x = \alpha \): \[ (2\alpha - 3) \alpha = 1 \] \[ 2\alpha^2 - 3\alpha - 1 = 0 \] 5. **Solve the Quadratic Equation**: Using the quadratic formula \( \alpha = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 2, b = -3, c = -1 \): \[ \alpha = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] \[ = \frac{3 \pm \sqrt{9 + 8}}{4} \] \[ = \frac{3 \pm \sqrt{17}}{4} \] 6. **Find Values of \( x \)**: Since \( \alpha = \log_{10} x \): \[ x = 10^{\alpha} = 10^{\frac{3 + \sqrt{17}}{4}} \quad \text{or} \quad x = 10^{\frac{3 - \sqrt{17}}{4}} \] ### Final Answer: The possible values of \( x \) are: \[ x = 10^{\frac{3 + \sqrt{17}}{4}} \quad \text{or} \quad x = 10^{\frac{3 - \sqrt{17}}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTION|14 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8 (A)(SHORT ANSWER TYPE QUESTION)|27 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If the third term in the expansion of ((1)/(x)+_(x)log_(10x))^(5) is 1000, then find x

Find the third term in the expansion of (x + 2/5 y)^4

If the fourth term in the expansion of ( x + x^(log_(2) x ))^(7) is 4480 , then the value of x where x in N is equal to :

Find the middle term in the expansion of (1+2x+x^(2))^(10)

Find the middle term in the expansion of (1+2x+x^(2))^(10)

If the third term in expansion of (1+x^(log_(2)x))^(5) is 2560 then x is equal to (1+x^(log_(2)x))^(5) (d) 4sqrt(2)