Home
Class 11
MATHS
Evaluate : ""^10C1 + ""^10C2 + ""^10C3 +...

Evaluate : `""^10C_1 + ""^10C_2 + ""^10C_3 + …. + ""^10C_10 `

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the sum \( \binom{10}{1} + \binom{10}{2} + \binom{10}{3} + \ldots + \binom{10}{10} \), we can use the properties of binomial coefficients. ### Step-by-Step Solution: 1. **Understand the Binomial Theorem**: The Binomial Theorem states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] For our case, we can set \( n = 10 \), \( x = 1 \), and \( y = 1 \). 2. **Apply the Binomial Theorem**: By substituting \( x = 1 \) and \( y = 1 \) into the theorem, we get: \[ (1 + 1)^{10} = \sum_{k=0}^{10} \binom{10}{k} 1^{10-k} 1^k = \sum_{k=0}^{10} \binom{10}{k} \] This simplifies to: \[ 2^{10} = \sum_{k=0}^{10} \binom{10}{k} \] 3. **Calculate \( 2^{10} \)**: We know that: \[ 2^{10} = 1024 \] 4. **Separate the Terms**: The sum \( \sum_{k=0}^{10} \binom{10}{k} \) includes all coefficients from \( \binom{10}{0} \) to \( \binom{10}{10} \). To find the sum from \( k=1 \) to \( k=10 \), we can subtract \( \binom{10}{0} \): \[ \sum_{k=1}^{10} \binom{10}{k} = \sum_{k=0}^{10} \binom{10}{k} - \binom{10}{0} = 1024 - 1 \] 5. **Final Calculation**: Thus, we have: \[ \sum_{k=1}^{10} \binom{10}{k} = 1024 - 1 = 1023 \] ### Conclusion: The value of \( \binom{10}{1} + \binom{10}{2} + \binom{10}{3} + \ldots + \binom{10}{10} \) is \( 1023 \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTION|14 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8 (A)(SHORT ANSWER TYPE QUESTION)|27 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate ""^(10)C_1 + ""^(10)C_2 + ""^(10)C_3 + ………+""^10C_10

Evaluate : ""^(13)C_(10)

Evaluate: ^10C_5

Evaluate .^10C_4+^10C_5