Home
Class 11
MATHS
Evaluate : sum(r = 1)^(n) ""^(n)C(r) 2^...

Evaluate : `sum_(r = 1)^(n) ""^(n)C_(r) 2^r`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the sum \( \sum_{r=1}^{n} \binom{n}{r} 2^r \), we can use the Binomial Theorem. Here’s a step-by-step solution: ### Step 1: Understand the Binomial Theorem The Binomial Theorem states that: \[ (x + y)^n = \sum_{r=0}^{n} \binom{n}{r} x^r y^{n-r} \] For our case, we can set \( x = 2 \) and \( y = 1 \). ### Step 2: Apply the Binomial Theorem Using the values of \( x \) and \( y \): \[ (2 + 1)^n = \sum_{r=0}^{n} \binom{n}{r} 2^r 1^{n-r} \] This simplifies to: \[ 3^n = \sum_{r=0}^{n} \binom{n}{r} 2^r \] ### Step 3: Separate the Terms The sum \( \sum_{r=0}^{n} \binom{n}{r} 2^r \) includes the term for \( r = 0 \) (which is \( \binom{n}{0} 2^0 = 1 \)). Therefore, we can express our original sum as: \[ \sum_{r=1}^{n} \binom{n}{r} 2^r = \sum_{r=0}^{n} \binom{n}{r} 2^r - \binom{n}{0} 2^0 \] This leads to: \[ \sum_{r=1}^{n} \binom{n}{r} 2^r = 3^n - 1 \] ### Step 4: Final Result Thus, the value of the sum \( \sum_{r=1}^{n} \binom{n}{r} 2^r \) is: \[ \boxed{3^n - 1} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTION|14 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8 (A)(SHORT ANSWER TYPE QUESTION)|27 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate sum_(r = 1)^(n) ""^nC_r 2^r

Evaluate sum_(r=0)^(n) ""^(n+r)C_(n) .

Evaluate: sum_(r=1)^n(3^r-2^r)

Statement-1: sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1) Statement -2: sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)

Stetemet - 1: sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1) Statement-2: sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x

Statement-1 sum_(r=0)^(n) r ""^(n)C_(r) x^(r) (-1)^(r) = nx (1 - x)^(n -1) Statement-2: sum_(r=0)^(n)r ""^(n)C_(r) x^(r) (-1)^(r) =0

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to