Home
Class 11
MATHS
Use Binomial theorem to find : (51)^6...

Use Binomial theorem to find : `(51)^6`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( 51^6 \) using the Binomial Theorem, we can express \( 51 \) as \( 50 + 1 \). Then, we can apply the Binomial Theorem to expand \( (50 + 1)^6 \). ### Step-by-Step Solution: 1. **Identify the Binomial Expansion**: The Binomial Theorem states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] Here, we will let \( x = 50 \), \( y = 1 \), and \( n = 6 \). 2. **Set Up the Expansion**: Using the theorem, we have: \[ (50 + 1)^6 = \sum_{k=0}^{6} \binom{6}{k} 50^{6-k} \cdot 1^k \] 3. **Calculate Each Term**: We will calculate each term in the expansion: - For \( k = 0 \): \[ \binom{6}{0} 50^6 = 1 \cdot 50^6 \] - For \( k = 1 \): \[ \binom{6}{1} 50^5 \cdot 1 = 6 \cdot 50^5 \] - For \( k = 2 \): \[ \binom{6}{2} 50^4 \cdot 1^2 = 15 \cdot 50^4 \] - For \( k = 3 \): \[ \binom{6}{3} 50^3 \cdot 1^3 = 20 \cdot 50^3 \] - For \( k = 4 \): \[ \binom{6}{4} 50^2 \cdot 1^4 = 15 \cdot 50^2 \] - For \( k = 5 \): \[ \binom{6}{5} 50^1 \cdot 1^5 = 6 \cdot 50 \] - For \( k = 6 \): \[ \binom{6}{6} 50^0 \cdot 1^6 = 1 \] 4. **Substituting Values**: Now, we substitute the powers of \( 50 \): \[ 50^6 = 15625000000, \quad 50^5 = 312500000, \quad 50^4 = 6250000, \quad 50^3 = 125000, \quad 50^2 = 2500, \quad 50^1 = 50 \] 5. **Calculating Each Term**: - \( 1 \cdot 15625000000 = 15625000000 \) - \( 6 \cdot 312500000 = 1875000000 \) - \( 15 \cdot 6250000 = 93750 \) - \( 20 \cdot 125000 = 2500000 \) - \( 15 \cdot 2500 = 37500 \) - \( 6 \cdot 50 = 300 \) - \( 1 \cdot 1 = 1 \) 6. **Summing All Terms**: Now, we sum all the terms: \[ 15625000000 + 1875000000 + 93750 + 2500000 + 37500 + 300 + 1 \] 7. **Final Calculation**: Performing the addition: \[ 15625000000 + 1875000000 = 17500000000 \] \[ 17500000000 + 93750 = 17500093750 \] \[ 17500093750 + 2500000 = 17502543750 \] \[ 17502543750 + 37500 = 17502581250 \] \[ 17502581250 + 300 = 17502581550 \] \[ 17502581550 + 1 = 17502581551 \] Thus, the final result is: \[ \boxed{17592151000} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8 (A)(LONG ANSWER TYPE QUESTION)|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8 (B)(LONG ANSWER TYPE QUESTION-I)|31 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTION|14 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Use Binomial theorem to find (1.02)^6 , , correct to five decimal places.

Use the binomial theorem to find 999^(3).

Using binomial theorem find the value: (1)(0.999)^(4) [correct to three places of decimals]

Binomial Theorem: Lecture 6

Expand the following by binomial theorem: (1-x)^6

Binomial Theorem: Lecture 9

Binomial Theorem: Lecture 1

Binomial Theorem: Lecture 2