Home
Class 11
MATHS
Let (1+x+x^2)^9=a0+a1x+a2 x^2+.....+a18...

Let `(1+x+x^2)^9=a_0+a_1x+a_2 x^2+.....+a_18 x^(18)`. Then

A

`a_0 +a_2 + ………….+a_18 =a_1 +a_3 +………..+a_17`

B

`a_0 +a_2+………+a_18 ` is even

C

`a_0 + a_2 + ……….+a_18` is divisible by 9

D

`a_0 +a_2 + …………+a_18` is divisible by 3 but not by 9 .

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((B) FILL IN THE BLANKS )|10 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((C) TRUE/FALSE QUESTION )|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((A) MULTIPLE FROM NCERT EXEMPLAR (FOR BOARD EXAMINATION) )|8 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If (1 + ax + b x^2)^4 = a_0 +a_1 x + a_2 x^2 +...+a_8 x^8 when a,b,a_0,a_1,a_2...,a_8 in R such that a_0+a_1+a_2 != 0 and |(a_0,a_1,a_2),(a_1,a_2,a_3),(a_2,a_0,a_1)| then the value of 5a/b (A) 6 (B) 8 (C) 10 (D) 12

Let n be a positive integer, such that (1 + x + x^2)^n=a_0 +a_1x+ a_2 x^2+a_3 x^3+......a_(2n) x^(2n), Answer the following question: The value of a when (0 leq r leq n) is (A) a_(2n-r) (B) a_(n-r) (C) a_(2n) (D) n. a_(2n-1)

Let (1+x+2x^2)^20=a_0+a_1x+a_2x^2+....+a_40x^40. " Then, "a_1+a_3+a_5.....+a_37 is equal to :

(1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+....+a_(18)x^(18)

Given that (1+x+x^2)^n=a_0+a_1x+a_2x^2+.....+a_(2n)x^(2n) find i) a_0 + a_1 +a_2 .. . . .+ a_(2n) ii) a_0 - a_1 + a_2 - a_3 . . . . + a_(2n) iii) (a_0)^2 - (a_1)^2 . . . . .+ (a_(2n))^2

If (1+x-x^2)^n/(1+x^2)=a_0+a_1x+a_2x^2+...+a_(2n)x^(2n) then find a_0+a_1+a_2+...+a_(2n)

If (1+2x-x^2)^n/(1+x^2)=a_0+a_1x+a_2x^2+...+a_(2n)x^(2n) then find a_0+a_2+a_4+...+a_(2n)

If (1+x-x^2)^n/(1+x^2)=a_0+a_1x+a_2x^2+...+a_(2n)x^(2n) then find a_0-a_1+a_2_...+a_(2n)

If (1+x-x^2)^n/(1+x^2)=a_0+a_1x+a_2x^2+...+a_(2n)x^(2n) then find a_1+a_3+a_5+...+a_(2n-1)

If (1+x+2x^2)^20 = a_0+a_1x+a_2x^2+. . . +a_40x^40 then a_1+a_3+a_5+ . . . +a_37=