Home
Class 11
MATHS
Expand using binomial theorem (4x - 5y)^...

Expand using binomial theorem `(4x - 5y)^5 ` = ………..

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((4x - 5y)^5\) using the Binomial Theorem, we follow these steps: ### Step 1: Identify the terms In the expression \((4x - 5y)^5\), we can identify: - \(a = 4x\) - \(b = -5y\) - \(n = 5\) ### Step 2: Write the Binomial Theorem formula The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] For our case, we have: \[ (4x - 5y)^5 = \sum_{k=0}^{5} \binom{5}{k} (4x)^{5-k} (-5y)^k \] ### Step 3: Calculate each term in the expansion We will calculate each term for \(k = 0\) to \(k = 5\): 1. **For \(k = 0\)**: \[ \binom{5}{0} (4x)^5 (-5y)^0 = 1 \cdot (4x)^5 \cdot 1 = 1024x^5 \] 2. **For \(k = 1\)**: \[ \binom{5}{1} (4x)^4 (-5y)^1 = 5 \cdot (256x^4) \cdot (-5y) = -12800x^4y \] 3. **For \(k = 2\)**: \[ \binom{5}{2} (4x)^3 (-5y)^2 = 10 \cdot (64x^3) \cdot 25y^2 = 16000x^3y^2 \] 4. **For \(k = 3\)**: \[ \binom{5}{3} (4x)^2 (-5y)^3 = 10 \cdot (16x^2) \cdot (-125y^3) = -20000x^2y^3 \] 5. **For \(k = 4\)**: \[ \binom{5}{4} (4x)^1 (-5y)^4 = 5 \cdot (4x) \cdot 625y^4 = 12500xy^4 \] 6. **For \(k = 5\)**: \[ \binom{5}{5} (4x)^0 (-5y)^5 = 1 \cdot 1 \cdot (-3125y^5) = -3125y^5 \] ### Step 4: Combine all terms Now, we combine all the calculated terms: \[ (4x - 5y)^5 = 1024x^5 - 12800x^4y + 16000x^3y^2 - 20000x^2y^3 + 12500xy^4 - 3125y^5 \] ### Final Answer: \[ (4x - 5y)^5 = 1024x^5 - 12800x^4y + 16000x^3y^2 - 20000x^2y^3 + 12500xy^4 - 3125y^5 \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((C) TRUE/FALSE QUESTION )|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((D) VERY SHORT ANSWER TYPE QUESTION)|16 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((A) MULTIPLE FROM NCERT EXEMPLAR (ADDITIONAL QUESTION) )|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Expand using binomial theorem (x+1/x)^2 (x ne 0) = ………..

Expand using binomial theorem: (i) (1-2x)^(4) " " (ii) (x+2y)^(5) (iii) (x-(1)/(x))^(6) " "(iv) ((2x)/(3)=(3)/(2x))^(5) (v) (x^(2) +(2)/(x))^(6)" "(vi) (1+(1)/(x^(2)))^(4)

Expand the following by binomial theorem: (x+y)^5

Expand (2x+7)^(5) by using binomial theorem

Expand the following by binomial theorem: (1-2x)^5

Expand the following by binomial theorem: (2x-3)^6

Expand the following by binomial theorem: (1-x)^6

Expand using Binomial Theorem (1+(x)/(2)-(2)/(x))^(4),x!=0

Using binomial theorem,evaluate: (99)^(5)

Expand the following by binomial theorem: (x+ 1/x)^7