Home
Class 11
MATHS
Expand using binomial theorem (x+1/x)^2 ...

Expand using binomial theorem `(x+1/x)^2 (x ne 0)` = ………..

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((x + \frac{1}{x})^2\) using the binomial theorem, we can follow these steps: ### Step 1: Identify the terms In the expression \((x + \frac{1}{x})^2\), we can identify: - \(a = x\) - \(b = \frac{1}{x}\) - \(n = 2\) ### Step 2: Apply the binomial theorem The binomial theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] For our case, we substitute \(a\), \(b\), and \(n\): \[ (x + \frac{1}{x})^2 = \sum_{k=0}^{2} \binom{2}{k} x^{2-k} \left(\frac{1}{x}\right)^k \] ### Step 3: Calculate each term in the expansion Now we calculate each term for \(k = 0\), \(1\), and \(2\): - **For \(k = 0\)**: \[ \binom{2}{0} x^{2-0} \left(\frac{1}{x}\right)^0 = 1 \cdot x^2 \cdot 1 = x^2 \] - **For \(k = 1\)**: \[ \binom{2}{1} x^{2-1} \left(\frac{1}{x}\right)^1 = 2 \cdot x^1 \cdot \frac{1}{x} = 2 \] - **For \(k = 2\)**: \[ \binom{2}{2} x^{2-2} \left(\frac{1}{x}\right)^2 = 1 \cdot x^0 \cdot \frac{1}{x^2} = \frac{1}{x^2} \] ### Step 4: Combine all terms Now, we combine all the terms from \(k = 0\), \(1\), and \(2\): \[ (x + \frac{1}{x})^2 = x^2 + 2 + \frac{1}{x^2} \] ### Final Result Thus, the expansion of \((x + \frac{1}{x})^2\) is: \[ x^2 + 2 + \frac{1}{x^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((C) TRUE/FALSE QUESTION )|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((D) VERY SHORT ANSWER TYPE QUESTION)|16 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((A) MULTIPLE FROM NCERT EXEMPLAR (ADDITIONAL QUESTION) )|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Expand using binomial theorem (4x - 5y)^5 = ………..

Expand using binomial theorem: (i) (1-2x)^(4) " " (ii) (x+2y)^(5) (iii) (x-(1)/(x))^(6) " "(iv) ((2x)/(3)=(3)/(2x))^(5) (v) (x^(2) +(2)/(x))^(6)" "(vi) (1+(1)/(x^(2)))^(4)

Expand the following by binomial theorem: (x+ 1/x)^7

Expand (2x+7)^(5) by using binomial theorem

Expand the following by binomial theorem: (1-x)^6

Expand the following by binomial theorem: (x/3+1/x)^5

Expand the following by binomial theorem: (1-2x)^5

Using binomial theorem,expand (x+(1)/(y))^(11)

Expand the following by binomial theorem: (x+y)^5

(x^(2) +1)/x, x ne 0