Home
Class 11
MATHS
The value of (sqrt3 + sqrt2)^3 + (sqrt3 ...

The value of `(sqrt3 + sqrt2)^3 + (sqrt3 -sqrt2)^3 ` is ………..

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sqrt{3} + \sqrt{2})^3 + (\sqrt{3} - \sqrt{2})^3\), we can use the formula for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Here, let: - \(a = \sqrt{3} + \sqrt{2}\) - \(b = \sqrt{3} - \sqrt{2}\) ### Step 1: Calculate \(a + b\) \[ a + b = (\sqrt{3} + \sqrt{2}) + (\sqrt{3} - \sqrt{2}) = 2\sqrt{3} \] **Hint:** Combine like terms to simplify the expression. ### Step 2: Calculate \(a^2\) and \(b^2\) \[ a^2 = (\sqrt{3} + \sqrt{2})^2 = 3 + 2 + 2\sqrt{6} = 5 + 2\sqrt{6} \] \[ b^2 = (\sqrt{3} - \sqrt{2})^2 = 3 + 2 - 2\sqrt{6} = 5 - 2\sqrt{6} \] **Hint:** Use the formula \((x+y)^2 = x^2 + y^2 + 2xy\) to expand the squares. ### Step 3: Calculate \(ab\) \[ ab = (\sqrt{3} + \sqrt{2})(\sqrt{3} - \sqrt{2}) = 3 - 2 = 1 \] **Hint:** Recognize that this is a difference of squares. ### Step 4: Substitute into the sum of cubes formula Now we can substitute \(a + b\), \(a^2\), \(b^2\), and \(ab\) into the formula: \[ a^2 + b^2 = (5 + 2\sqrt{6}) + (5 - 2\sqrt{6}) = 10 \] So we have: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) = (2\sqrt{3})(10 - 1) = (2\sqrt{3})(9) = 18\sqrt{3} \] ### Final Answer Thus, the value of \((\sqrt{3} + \sqrt{2})^3 + (\sqrt{3} - \sqrt{2})^3\) is: \[ \boxed{18\sqrt{3}} \] ---
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((C) TRUE/FALSE QUESTION )|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((D) VERY SHORT ANSWER TYPE QUESTION)|16 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((A) MULTIPLE FROM NCERT EXEMPLAR (ADDITIONAL QUESTION) )|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

(2sqrt3 + sqrt2)(2sqrt3-sqrt2)

The square root of ( (sqrt3 + sqrt2)/(sqrt3 - sqrt2)) is

sqrt2 - y^3 + sqrt3 -y

The value of sqrt(2 + sqrt(3)) + sqrt(2 - sqrt(3)) is

The value of (1-sqrt2) + (sqrt2-sqrt3)+(sqrt3-sqrt4)+ ............ + (sqrt15-sqrt16) is

The value of 5 sqrt3+7 sqrt2- sqrt6-23/(sqrt2 +sqrt3+ sqrt6) is:- 5 sqrt3+7 sqrt2- sqrt6-23/(sqrt2 +sqrt3+ sqrt6) का मान क्या होगा ?

Find the value of (2 - sqrt3)/(2 + sqrt3)