Home
Class 11
MATHS
Value of (10.1)^4, using binomial theore...

Value of `(10.1)^4`, using binomial theorem is 10406.0401

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( (10.1)^4 \) using the binomial theorem, we can express \( 10.1 \) as \( (10 + 0.1) \). According to the binomial theorem, we can expand \( (x + y)^n \) as follows: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] In our case: - \( x = 10 \) - \( y = 0.1 \) - \( n = 4 \) Now, we can expand \( (10 + 0.1)^4 \): \[ (10 + 0.1)^4 = \sum_{k=0}^{4} \binom{4}{k} (10)^{4-k} (0.1)^k \] Calculating each term in the expansion: 1. **For \( k = 0 \)**: \[ \binom{4}{0} (10)^{4} (0.1)^{0} = 1 \cdot 10000 \cdot 1 = 10000 \] 2. **For \( k = 1 \)**: \[ \binom{4}{1} (10)^{3} (0.1)^{1} = 4 \cdot 1000 \cdot 0.1 = 400 \] 3. **For \( k = 2 \)**: \[ \binom{4}{2} (10)^{2} (0.1)^{2} = 6 \cdot 100 \cdot 0.01 = 6 \] 4. **For \( k = 3 \)**: \[ \binom{4}{3} (10)^{1} (0.1)^{3} = 4 \cdot 10 \cdot 0.001 = 0.04 \] 5. **For \( k = 4 \)**: \[ \binom{4}{4} (10)^{0} (0.1)^{4} = 1 \cdot 1 \cdot 0.0001 = 0.0001 \] Now, we can sum all these terms together: \[ 10000 + 400 + 6 + 0.04 + 0.0001 = 10406.0401 \] Thus, the value of \( (10.1)^4 \) is \( 10406.0401 \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((D) VERY SHORT ANSWER TYPE QUESTION)|16 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8.1|14 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((B) FILL IN THE BLANKS )|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Derive Binomial theorem

Expand (2x+7)^(5) by using binomial theorem

Find the values of the following using binomial theorem: (i) 49^(4) " "(ii) (1.1)^(4) (iii) 101^(3)" "(iv) (0.9)^(5)

Binomial Theorem: Lecture 10

Using binomial theorem,evaluate: (101)^(4)

Find the value of (98)^(4) by using the binomial theorem.

Binomial Theorem: Lecture 4

Binomial Theorem: Lecture 1