Home
Class 11
MATHS
Expand (x^2 -y)^7...

Expand `(x^2 -y)^7`

Text Solution

AI Generated Solution

The correct Answer is:
To expand \((x^2 - y)^7\) using the Binomial Theorem, we will follow these steps: ### Step 1: Identify the components In the expression \((x^2 - y)^7\), we identify: - \(a = x^2\) - \(b = -y\) - \(n = 7\) ### Step 2: Write the Binomial Expansion Formula The Binomial Theorem states that: \[ (a + b)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^r \] Thus, for our case: \[ (x^2 - y)^7 = \sum_{r=0}^{7} \binom{7}{r} (x^2)^{7-r} (-y)^r \] ### Step 3: Expand the terms Now we will calculate each term in the expansion for \(r = 0\) to \(r = 7\): - **For \(r = 0\)**: \[ \binom{7}{0} (x^2)^{7} (-y)^{0} = 1 \cdot x^{14} \cdot 1 = x^{14} \] - **For \(r = 1\)**: \[ \binom{7}{1} (x^2)^{6} (-y)^{1} = 7 \cdot x^{12} \cdot (-y) = -7x^{12}y \] - **For \(r = 2\)**: \[ \binom{7}{2} (x^2)^{5} (-y)^{2} = 21 \cdot x^{10} \cdot y^{2} = 21x^{10}y^{2} \] - **For \(r = 3\)**: \[ \binom{7}{3} (x^2)^{4} (-y)^{3} = 35 \cdot x^{8} \cdot (-y^{3}) = -35x^{8}y^{3} \] - **For \(r = 4\)**: \[ \binom{7}{4} (x^2)^{3} (-y)^{4} = 35 \cdot x^{6} \cdot y^{4} = 35x^{6}y^{4} \] - **For \(r = 5\)**: \[ \binom{7}{5} (x^2)^{2} (-y)^{5} = 21 \cdot x^{4} \cdot (-y^{5}) = -21x^{4}y^{5} \] - **For \(r = 6\)**: \[ \binom{7}{6} (x^2)^{1} (-y)^{6} = 7 \cdot x^{2} \cdot y^{6} = 7x^{2}y^{6} \] - **For \(r = 7\)**: \[ \binom{7}{7} (x^2)^{0} (-y)^{7} = 1 \cdot 1 \cdot (-y^{7}) = -y^{7} \] ### Step 4: Combine all terms Now we combine all the terms we calculated: \[ (x^2 - y)^7 = x^{14} - 7x^{12}y + 21x^{10}y^{2} - 35x^{8}y^{3} + 35x^{6}y^{4} - 21x^{4}y^{5} + 7x^{2}y^{6} - y^{7} \] ### Final Answer: Thus, the expansion of \((x^2 - y)^7\) is: \[ x^{14} - 7x^{12}y + 21x^{10}y^{2} - 35x^{8}y^{3} + 35x^{6}y^{4} - 21x^{4}y^{5} + 7x^{2}y^{6} - y^{7} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8.1|14 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8.2|12 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((C) TRUE/FALSE QUESTION )|5 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Expand (y+x)^2

Expand (x+2y)^(5)

Expand (x^(2) + 2y)^(5) using binomial expansion.

Expand : ( y+2)^6

Expand (1+x)^-2 .

Expand (8x - 7y)^(2) .

Expand (2x-3y)^(4) by binomial theorem.

Expand (3x-2y)^(6) with the help ob binomial theorm.

Expand: (5x+2y)^(2)