Home
Class 11
MATHS
Evaluate the ""^12C0 + ""^12C2 + ""^12C4...

Evaluate the `""^12C_0 + ""^12C_2 + ""^12C_4 +………….+""^12C_12`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \binom{12}{0} + \binom{12}{2} + \binom{12}{4} + \ldots + \binom{12}{12} \), we can use the Binomial Theorem and properties of binomial coefficients. ### Step-by-Step Solution: 1. **Understand the Binomial Theorem**: The Binomial Theorem states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] For our case, we will use \( n = 12 \). 2. **Set Up the Expression**: We want to evaluate the sum of the even-indexed binomial coefficients from \( \binom{12}{0} \) to \( \binom{12}{12} \). This can be represented as: \[ S = \binom{12}{0} + \binom{12}{2} + \binom{12}{4} + \ldots + \binom{12}{12} \] 3. **Use the Binomial Theorem**: We can evaluate \( (1 + 1)^{12} \) and \( (1 - 1)^{12} \): \[ (1 + 1)^{12} = 2^{12} = \sum_{k=0}^{12} \binom{12}{k} \] \[ (1 - 1)^{12} = 0^{12} = 0 = \sum_{k=0}^{12} \binom{12}{k} (-1)^k \] 4. **Combine the Two Results**: The first equation gives us the total sum of all binomial coefficients, while the second gives us the alternating sum: \[ \sum_{k=0}^{12} \binom{12}{k} (-1)^k = \binom{12}{0} - \binom{12}{1} + \binom{12}{2} - \binom{12}{3} + \ldots + \binom{12}{12} = 0 \] 5. **Add the Two Equations**: Now, if we add the two results: \[ 2^{12} + 0 = \sum_{k=0}^{12} \binom{12}{k} + \sum_{k=0}^{12} \binom{12}{k} (-1)^k \] The odd-indexed terms will cancel out, leaving us with: \[ 2^{12} = 2 \left( \binom{12}{0} + \binom{12}{2} + \binom{12}{4} + \ldots + \binom{12}{12} \right) \] 6. **Solve for \( S \)**: Thus, we have: \[ 2^{12} = 2S \] Dividing both sides by 2: \[ S = \frac{2^{12}}{2} = 2^{11} \] 7. **Final Answer**: Therefore, the value of the expression \( \binom{12}{0} + \binom{12}{2} + \binom{12}{4} + \ldots + \binom{12}{12} \) is: \[ \boxed{2048} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8.1|14 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8.2|12 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((C) TRUE/FALSE QUESTION )|5 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate .^(12)C_(7) .

Evaluate the following: ^(12)C_(10)

If ""^(12)C_(0)""^(12)C_(1).....""^(12)C_(12) are the binomial coefficients of the expansion (1+x)^(12),"them" ""^(12)C_(0)-""^(12)C_(1)+""^(12C_(2-""^(12)C_(3)+......""^(12)C_(12= ____________

Evaluate: (i) .^(12)C_(1)+.^(12)C_(2)+.^(12)C_(3)+ . . .+.^(12)C_(12) (ii) .^(19)C_(3)+.^(19)C_(5)+.^(19)C_(7)+ . . .+^(19)C_(19) .

If "^17C_5 = ^nC_12 find n.