Home
Class 11
MATHS
Evaluate the ""^16C1 + ""^16C3 +""^16C5+...

Evaluate the `""^16C_1 + ""^16C_3 +""^16C_5+…………..+""^16C_15`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \binom{16}{1} + \binom{16}{3} + \binom{16}{5} + \ldots + \binom{16}{15} \), we can use properties of binomial coefficients and the Binomial Theorem. ### Step-by-Step Solution: 1. **Understanding the Sum of Odd Indexed Binomial Coefficients**: The sum \( \binom{16}{1} + \binom{16}{3} + \binom{16}{5} + \ldots + \binom{16}{15} \) includes all the odd indexed binomial coefficients from \( n = 16 \). 2. **Using the Binomial Theorem**: The Binomial Theorem states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] For \( n = 16 \), we can set \( x = 1 \) and \( y = 1 \): \[ (1 + 1)^{16} = \sum_{k=0}^{16} \binom{16}{k} = 2^{16} \] 3. **Separating Even and Odd Indexed Terms**: We can also evaluate \( (1 - 1)^{16} \): \[ (1 - 1)^{16} = \sum_{k=0}^{16} \binom{16}{k} (-1)^k = 0 \] This implies that: \[ \sum_{k \text{ even}} \binom{16}{k} - \sum_{k \text{ odd}} \binom{16}{k} = 0 \] Let \( A = \sum_{k \text{ even}} \binom{16}{k} \) and \( B = \sum_{k \text{ odd}} \binom{16}{k} \). Therefore, we have: \[ A - B = 0 \implies A = B \] 4. **Finding the Value of A and B**: From the first equation, we know: \[ A + B = 2^{16} \] Since \( A = B \), we can substitute: \[ 2A = 2^{16} \implies A = 2^{15} \] Thus, \( B = 2^{15} \). 5. **Conclusion**: Therefore, the sum of the odd indexed binomial coefficients is: \[ \binom{16}{1} + \binom{16}{3} + \binom{16}{5} + \ldots + \binom{16}{15} = 2^{15} \] ### Final Answer: \[ \binom{16}{1} + \binom{16}{3} + \binom{16}{5} + \ldots + \binom{16}{15} = 32768 \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8.1|14 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8.2|12 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((C) TRUE/FALSE QUESTION )|5 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

State whether the statements are true or false : ""^16C_0-""^16C_1+""^16C_2-...+""^16C_16=0

C_(7)H_(16) is ……………. .

16C_(0)-16C_(1)+16C_(2)-..........+16C_(8)

Find the H.C.F. of 16 and 24.

If .^(16)C_(r) = .^(16)C_(r+6) , then find .^(5)C_(r) .

Write the value of (11/16)^c

If for z as real or complex . (1+z^(2) + z^(4))^(8) = C_(0) C_(1) z^(2) C_(2) z^(4) + …+ C_(16) z^(32) , prove that C_(0) + C_(3) + C_(6) + C_(9) + C_(12) + C_(15) + (C_(2) + C_(5) + C_(8) + C_(11) + C_(14)) + (C_(1) + C_(4) + C_(7) + C_(10) + C_(16)) omega^(2) = 0 , where omega is a cube root of unity .

A shopkeeper cheats to the extent of 8% while buying and selling fruits, by using tampered weights, his total gain in percentage is: A. 16.25 B. 16.64 C. 16. 75 D. 16.5