Home
Class 11
MATHS
If (1+x)^n = C0 + C1 x + C2x^2 + …………+C...

If `(1+x)^n = C_0 + C_1 x + C_2x^2 + …………+C_n x^n` , find the value of `C_0 - 2C_1 + 3C_2 - ……….+ (-1)^n (n+1) C_n`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( C_0 - 2C_1 + 3C_2 - \ldots + (-1)^n (n+1) C_n \), we start from the binomial expansion of \( (1+x)^n \): \[ (1+x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \] ### Step 1: Multiply the entire equation by \( x \) We multiply both sides of the equation by \( x \): \[ x(1+x)^n = C_0 x + C_1 x^2 + C_2 x^3 + \ldots + C_n x^{n+1} \] ### Step 2: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}\left[x(1+x)^n\right] = \frac{d}{dx}\left[C_0 x + C_1 x^2 + C_2 x^3 + \ldots + C_n x^{n+1}\right] \] Using the product rule on the left side, we have: \[ (1+x)^n + nx(1+x)^{n-1} = C_0 + 2C_1 x + 3C_2 x^2 + \ldots + (n+1)C_n x^n \] ### Step 3: Substitute \( x = -1 \) Next, we substitute \( x = -1 \) into the differentiated equation: \[ (1 - 1)^n + n(-1)(1 - 1)^{n-1} = C_0 + 2C_1(-1) + 3C_2(-1)^2 + \ldots + (n+1)C_n(-1)^n \] This simplifies to: \[ 0 + 0 = C_0 - 2C_1 + 3C_2 - \ldots + (-1)^n (n+1) C_n \] ### Step 4: Evaluate the left side The left side equals \( 0 \), so we have: \[ C_0 - 2C_1 + 3C_2 - \ldots + (-1)^n (n+1) C_n = 0 \] ### Final Result Thus, the value of \( C_0 - 2C_1 + 3C_2 - \ldots + (-1)^n (n+1) C_n \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8.1|14 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8.2|12 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((C) TRUE/FALSE QUESTION )|5 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^n = C_0 + C_1x + C_2x^2 + ………. + C_n x^n , prove that : C_0 + 2C_1 + ….. + 2 ""^nC_n = 3^n

If (1+x)^n = C_0 + C_1x + C_2x^2 + ………. + C_n x^n , prove that : C_0 + (C_1)/(2) + (C_2)/(3) + ……. + (C_n)/(n+1) = (2^(n+1) -1)/(n+1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + ... + C_(n) x^(n) , then value of C_(0)^(2) + 2C_(1)^(2) + 3C_(2)^(2) + ... + (n + 1) C^(2)n is

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + …+ C_(n) x^(n) , then C_(0) - (C_(0) - C_(1)) + (C_(0) + C_(1) + C_(2))- (C_(0) + C_(1) + C_(2)+ C_(3)) + ...+ (-1)^(n-1) (C_0) + C_(1) + C_(2) + ...+ C_(n-1)) , when n is even integer is