Home
Class 11
MATHS
Evaluate sum(r = 0)^(n) 3^r ""^nCr...

Evaluate `sum_(r = 0)^(n) 3^r ""^nC_r`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sum_{r=0}^{n} 3^r \binom{n}{r} \), we can utilize the Binomial Theorem. The Binomial Theorem states that: \[ (x + y)^n = \sum_{r=0}^{n} \binom{n}{r} x^r y^{n-r} \] ### Step-by-Step Solution: 1. **Identify the terms**: In our case, we can set \( x = 3 \) and \( y = 1 \). This gives us the expression: \[ (3 + 1)^n = \sum_{r=0}^{n} \binom{n}{r} 3^r 1^{n-r} \] 2. **Simplify the right side**: Since \( 1^{n-r} = 1 \) for any \( r \), we can simplify the right side: \[ (3 + 1)^n = \sum_{r=0}^{n} \binom{n}{r} 3^r \] 3. **Calculate the left side**: Now, calculate \( (3 + 1)^n \): \[ (3 + 1)^n = 4^n \] 4. **Conclusion**: Therefore, we have: \[ \sum_{r=0}^{n} 3^r \binom{n}{r} = 4^n \] ### Final Answer: \[ \sum_{r=0}^{n} 3^r \binom{n}{r} = 4^n \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8.1|14 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8.2|12 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((C) TRUE/FALSE QUESTION )|5 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate sum_(r = 1)^(n) ""^nC_r 2^r

Evaluate : sum_(r = 1)^(n) ""^(n)C_(r) 2^r

Evaluate sum_(r=0)^(n) ""^(n+r)C_(n) .

Evaluate sum_(r=0)^n(r+1)^2*"^nC_r

Evaluate: sum_(r=1)^n(3^r-2^r)

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

Evaluate sum_(r=1)^np_r/r*"^nC_r where p_r denotes the sum of the first r natural numbers.