Home
Class 11
MATHS
Prove that sum(r=0)^n3^r^n Cr=4^n....

Prove that `sum_(r=0)^n3^r^n C_r=4^n`.

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE 8.2|12 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTION ((D) VERY SHORT ANSWER TYPE QUESTION)|16 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(n)3^(rn)C_(r)=4^(n)

prove that sum_(r=0)^(n)3^(r)nC_(r)=4^(n)

Prove that sum_(r=0)^(n)nC_(r)3^(r)=4^(n)

Prove that sum_(r=0)^(n)r(n-r)C_(r)^(2)=n^(2)(^(2n-2)C_(n))

Prove that sum_(r=0)^(2n)(.^(2n)C_(r))^(2)=n^(4n)C_(2n)

Prove by mathematical induction that sum_(r=0)^(n)r^(n)C_(r)=n.2^(n-1), forall n in N .

If (1+x)^n=sum_(r=0)^n C_rx^r then prove that sum_(r=0)^n (C_r)/((r+1)2^(r+1))=(3^(n+1)-2^(n+1))/((n+1)2^(n+1))