Home
Class 11
MATHS
Evaluate ""^(10)C1 + ""^(10)C2 + ""^(10)...

Evaluate `""^(10)C_1 + ""^(10)C_2 + ""^(10)C_3 + ………+""^10C_10`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \binom{10}{1} + \binom{10}{2} + \binom{10}{3} + \ldots + \binom{10}{10} \), we can use the Binomial Theorem. ### Step-by-Step Solution: 1. **Understanding the Binomial Theorem**: The Binomial Theorem states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] For \( n = 10 \), this becomes: \[ (x + y)^{10} = \sum_{k=0}^{10} \binom{10}{k} x^{10-k} y^k \] 2. **Setting Values for x and y**: To find the sum \( \binom{10}{1} + \binom{10}{2} + \binom{10}{3} + \ldots + \binom{10}{10} \), we can set \( x = 1 \) and \( y = 1 \): \[ (1 + 1)^{10} = \sum_{k=0}^{10} \binom{10}{k} 1^{10-k} 1^k = \sum_{k=0}^{10} \binom{10}{k} \] 3. **Calculating the Left Side**: The left side simplifies to: \[ 2^{10} = 1024 \] 4. **Identifying the Terms**: The sum \( \sum_{k=0}^{10} \binom{10}{k} \) includes all the binomial coefficients from \( k = 0 \) to \( k = 10 \). We want to find: \[ \binom{10}{1} + \binom{10}{2} + \binom{10}{3} + \ldots + \binom{10}{10} \] This can be expressed as: \[ \sum_{k=1}^{10} \binom{10}{k} = \sum_{k=0}^{10} \binom{10}{k} - \binom{10}{0} \] 5. **Subtracting the Zero Term**: Since \( \binom{10}{0} = 1 \): \[ \sum_{k=1}^{10} \binom{10}{k} = 1024 - 1 = 1023 \] ### Final Answer: Thus, the value of \( \binom{10}{1} + \binom{10}{2} + \binom{10}{3} + \ldots + \binom{10}{10} \) is \( \boxed{1023} \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise REVISION EXERCISE|14 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate : ""^10C_1 + ""^10C_2 + ""^10C_3 + …. + ""^10C_10

Evaluate : ""^(13)C_(10)

Evaluate: ^10C_5

Evaluate .^10C_4+^10C_5

"^10(C_0)^2 + "^10(C_1)^2 + "^10(C_2)^2 + ...... + ( "^10C_9)^2 + ( "^10C_10)^2=