Home
Class 11
MATHS
Evaluate sum(r = 1)^(n) ""^nCr 2^r...

Evaluate `sum_(r = 1)^(n) ""^nC_r 2^r`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the sum \( \sum_{r=1}^{n} \binom{n}{r} 2^r \), we can use the Binomial Theorem. The Binomial Theorem states that: \[ (x + y)^n = \sum_{r=0}^{n} \binom{n}{r} x^r y^{n-r} \] In our case, we can set \( x = 2 \) and \( y = 1 \). Thus, we have: \[ (2 + 1)^n = \sum_{r=0}^{n} \binom{n}{r} 2^r 1^{n-r} \] This simplifies to: \[ 3^n = \sum_{r=0}^{n} \binom{n}{r} 2^r \] Now, we can separate the sum into two parts: \[ 3^n = \binom{n}{0} 2^0 + \sum_{r=1}^{n} \binom{n}{r} 2^r \] Since \( \binom{n}{0} = 1 \) and \( 2^0 = 1 \), we have: \[ 3^n = 1 + \sum_{r=1}^{n} \binom{n}{r} 2^r \] To isolate the sum \( \sum_{r=1}^{n} \binom{n}{r} 2^r \), we subtract 1 from both sides: \[ \sum_{r=1}^{n} \binom{n}{r} 2^r = 3^n - 1 \] Thus, the final result is: \[ \sum_{r=1}^{n} \binom{n}{r} 2^r = 3^n - 1 \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise REVISION EXERCISE|14 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate sum_(r = 0)^(n) 3^r ""^nC_r

Evaluate : sum_(r = 1)^(n) ""^(n)C_(r) 2^r

Evaluate sum_(r=0)^n(r+1)^2*"^nC_r

Evaluate sum_(r=1)^np_r/r*"^nC_r where p_r denotes the sum of the first r natural numbers.

Evaluate: sum_(r=1)^n(3^r-2^r)

Find sum_(r=0)^n(r+1)*"^nC_rx^r

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

Evaluate : sum_(r=1)^n (r+1)(r+3)

The value of sum_(r=0)^(3n-1)(-1)^(r)6nC_(2r+1)3^(r) is