Home
Class 11
MATHS
What is C0 + C1 +…………..+Cn in (1+x)^n...

What is `C_0 + C_1 +…………..+C_n ` in `(1+x)^n`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( C_0 + C_1 + \ldots + C_n \) in the expansion of \( (1+x)^n \), we can follow these steps: ### Step-by-Step Solution: 1. **Understanding the Binomial Expansion**: The binomial theorem states that: \[ (1+x)^n = \sum_{r=0}^{n} C(n, r) x^r \] where \( C(n, r) \) is the binomial coefficient, also denoted as \( nCr \) or \( \binom{n}{r} \). 2. **Identifying the Coefficients**: The coefficients \( C(n, r) \) in the expansion correspond to \( C_0, C_1, \ldots, C_n \). Thus, we can express: \[ C_0 + C_1 + \ldots + C_n = \sum_{r=0}^{n} C(n, r) \] 3. **Substituting \( x = 1 \)**: To find the sum of the coefficients, we can substitute \( x = 1 \) in the binomial expansion: \[ (1+1)^n = \sum_{r=0}^{n} C(n, r) \cdot 1^r \] This simplifies to: \[ 2^n = C_0 + C_1 + \ldots + C_n \] 4. **Conclusion**: Therefore, we conclude that: \[ C_0 + C_1 + \ldots + C_n = 2^n \] ### Final Answer: \[ C_0 + C_1 + \ldots + C_n = 2^n \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise REVISION EXERCISE|14 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^n = C_0 + C_1x + C_2x^2 + ………. + C_n x^n , prove that : C_0 + 2C_1 + ….. + 2 ""^nC_n = 3^n

If (1+x)^n = C_0 + C_1x + C_2x^2 + ………. + C_n x^n , prove that : C_0 + (C_1)/(2) + (C_2)/(3) + ……. + (C_n)/(n+1) = (2^(n+1) -1)/(n+1)

If (1+x)^n = C_0 + C_1 x + C_2x^2 + …………+C_n x^n , find the value of C_0 - 2C_1 + 3C_2 - ……….+ (-1)^n (n+1) C_n

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + …+ C_(n) x^(n) , then C_(0) - (C_(0) - C_(1)) + (C_(0) + C_(1) + C_(2))- (C_(0) + C_(1) + C_(2)+ C_(3)) + ...+ (-1)^(n-1) (C_0) + C_(1) + C_(2) + ...+ C_(n-1)) , when n is even integer is

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to