To find the first five terms of each sequence defined by the nth term formulas, we will substitute values of n from 1 to 5 into each formula.
### (i) \( a_n = 2n + 5 \)
1. For \( n = 1 \):
\[
a_1 = 2(1) + 5 = 2 + 5 = 7
\]
2. For \( n = 2 \):
\[
a_2 = 2(2) + 5 = 4 + 5 = 9
\]
3. For \( n = 3 \):
\[
a_3 = 2(3) + 5 = 6 + 5 = 11
\]
4. For \( n = 4 \):
\[
a_4 = 2(4) + 5 = 8 + 5 = 13
\]
5. For \( n = 5 \):
\[
a_5 = 2(5) + 5 = 10 + 5 = 15
\]
**First five terms**: 7, 9, 11, 13, 15
---
### (ii) \( a_n = n(n + 2) \)
1. For \( n = 1 \):
\[
a_1 = 1(1 + 2) = 1 \cdot 3 = 3
\]
2. For \( n = 2 \):
\[
a_2 = 2(2 + 2) = 2 \cdot 4 = 8
\]
3. For \( n = 3 \):
\[
a_3 = 3(3 + 2) = 3 \cdot 5 = 15
\]
4. For \( n = 4 \):
\[
a_4 = 4(4 + 2) = 4 \cdot 6 = 24
\]
5. For \( n = 5 \):
\[
a_5 = 5(5 + 2) = 5 \cdot 7 = 35
\]
**First five terms**: 3, 8, 15, 24, 35
---
### (iii) \( a_n = \frac{n - 3}{4} \)
1. For \( n = 1 \):
\[
a_1 = \frac{1 - 3}{4} = \frac{-2}{4} = -\frac{1}{2}
\]
2. For \( n = 2 \):
\[
a_2 = \frac{2 - 3}{4} = \frac{-1}{4}
\]
3. For \( n = 3 \):
\[
a_3 = \frac{3 - 3}{4} = \frac{0}{4} = 0
\]
4. For \( n = 4 \):
\[
a_4 = \frac{4 - 3}{4} = \frac{1}{4}
\]
5. For \( n = 5 \):
\[
a_5 = \frac{5 - 3}{4} = \frac{2}{4} = \frac{1}{2}
\]
**First five terms**: -1/2, -1/4, 0, 1/4, 1/2
---
### (iv) \( a_n = \frac{n}{n + 1} \)
1. For \( n = 1 \):
\[
a_1 = \frac{1}{1 + 1} = \frac{1}{2}
\]
2. For \( n = 2 \):
\[
a_2 = \frac{2}{2 + 1} = \frac{2}{3}
\]
3. For \( n = 3 \):
\[
a_3 = \frac{3}{3 + 1} = \frac{3}{4}
\]
4. For \( n = 4 \):
\[
a_4 = \frac{4}{4 + 1} = \frac{4}{5}
\]
5. For \( n = 5 \):
\[
a_5 = \frac{5}{5 + 1} = \frac{5}{6}
\]
**First five terms**: 1/2, 2/3, 3/4, 4/5, 5/6
---
### (v) \( a_n = \frac{n(n^2 + 5)}{4} \)
1. For \( n = 1 \):
\[
a_1 = \frac{1(1^2 + 5)}{4} = \frac{1 \cdot 6}{4} = \frac{6}{4} = \frac{3}{2}
\]
2. For \( n = 2 \):
\[
a_2 = \frac{2(2^2 + 5)}{4} = \frac{2 \cdot 9}{4} = \frac{18}{4} = \frac{9}{2}
\]
3. For \( n = 3 \):
\[
a_3 = \frac{3(3^2 + 5)}{4} = \frac{3 \cdot 14}{4} = \frac{42}{4} = \frac{21}{2}
\]
4. For \( n = 4 \):
\[
a_4 = \frac{4(4^2 + 5)}{4} = \frac{4 \cdot 21}{4} = 21
\]
5. For \( n = 5 \):
\[
a_5 = \frac{5(5^2 + 5)}{4} = \frac{5 \cdot 30}{4} = \frac{150}{4} = \frac{75}{2}
\]
**First five terms**: 3/2, 9/2, 21/2, 21, 75/2
---