Home
Class 11
MATHS
Find the sum of indicated number of term...

Find the sum of indicated number of terms of each of the following A.P.'s
`(i) 5,2,-1,-4,-7,…………., n` `terms `
`(ii)` `-1,1/4,3/2,…………..,81` `terms`
`(iii) 2,4,6,…………,100` `terms`
`(iv) -0.5,-1.0,-1.5,……………, 10` `terms` ;`50` `terms`
`(v) x+y,x-y,x-3y,..................22` `terms`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the indicated number of terms of each of the given arithmetic progressions (A.P.), we will use the formula for the sum of the first n terms of an A.P.: \[ S_n = \frac{n}{2} \left(2a + (n - 1)d\right) \] where: - \(S_n\) is the sum of the first n terms, - \(a\) is the first term, - \(d\) is the common difference, - \(n\) is the number of terms. Let's solve each part step by step. ### (i) A.P.: 5, 2, -1, -4, -7, …, n terms 1. **Identify the first term \(a\)**: - \(a = 5\) 2. **Calculate the common difference \(d\)**: - \(d = 2 - 5 = -3\) 3. **Use the sum formula**: \[ S_n = \frac{n}{2} \left(2 \cdot 5 + (n - 1)(-3)\right) \] \[ S_n = \frac{n}{2} \left(10 - 3(n - 1)\right) \] \[ S_n = \frac{n}{2} \left(10 - 3n + 3\right) \] \[ S_n = \frac{n}{2} \left(13 - 3n\right) \] ### (ii) A.P.: -1, 1/4, 3/2, …, 81 terms 1. **Identify the first term \(a\)**: - \(a = -1\) 2. **Calculate the common difference \(d\)**: - \(d = \frac{1}{4} - (-1) = \frac{1}{4} + 1 = \frac{5}{4}\) 3. **Use the sum formula**: \[ S_{81} = \frac{81}{2} \left(2 \cdot (-1) + (81 - 1) \cdot \frac{5}{4}\right) \] \[ S_{81} = \frac{81}{2} \left(-2 + 80 \cdot \frac{5}{4}\right) \] \[ S_{81} = \frac{81}{2} \left(-2 + 100\right) \] \[ S_{81} = \frac{81}{2} \cdot 98 = 81 \cdot 49 = 3969 \] ### (iii) A.P.: 2, 4, 6, …, 100 terms 1. **Identify the first term \(a\)**: - \(a = 2\) 2. **Calculate the common difference \(d\)**: - \(d = 4 - 2 = 2\) 3. **Use the sum formula**: \[ S_{100} = \frac{100}{2} \left(2 \cdot 2 + (100 - 1) \cdot 2\right) \] \[ S_{100} = 50 \left(4 + 198\right) \] \[ S_{100} = 50 \cdot 202 = 10100 \] ### (iv) A.P.: -0.5, -1.0, -1.5, …, 10 terms and 50 terms 1. **Identify the first term \(a\)**: - \(a = -0.5\) 2. **Calculate the common difference \(d\)**: - \(d = -1.0 - (-0.5) = -0.5\) 3. **Sum for 10 terms**: \[ S_{10} = \frac{10}{2} \left(2 \cdot (-0.5) + (10 - 1)(-0.5)\right) \] \[ S_{10} = 5 \left(-1 + (-4.5)\right) = 5 \cdot (-5.5) = -27.5 \] 4. **Sum for 50 terms**: \[ S_{50} = \frac{50}{2} \left(2 \cdot (-0.5) + (50 - 1)(-0.5)\right) \] \[ S_{50} = 25 \left(-1 + (-24.5)\right) = 25 \cdot (-25.5) = -637.5 \] ### (v) A.P.: \(x+y, x-y, x-3y, \ldots\), 22 terms 1. **Identify the first term \(a\)**: - \(a = x + y\) 2. **Calculate the common difference \(d\)**: - \(d = (x - y) - (x + y) = -2y\) 3. **Use the sum formula**: \[ S_{22} = \frac{22}{2} \left(2(x + y) + (22 - 1)(-2y)\right) \] \[ S_{22} = 11 \left(2x + 2y + 21(-2y)\right) \] \[ S_{22} = 11 \left(2x + 2y - 42y\right) = 11 \left(2x - 40y\right) = 22x - 440y \] ### Summary of Results: - (i) \(S_n = \frac{n}{2}(13 - 3n)\) - (ii) \(S_{81} = 3969\) - (iii) \(S_{100} = 10100\) - (iv) \(S_{10} = -27.5\), \(S_{50} = -637.5\) - (v) \(S_{22} = 22x - 440y\)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (c) LATQ|17 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (d) SATQ|7 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (a) LATQ|20 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Chapter Test|11 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos

Similar Questions

Explore conceptually related problems

Find the sum of indicated terms of each of the following geometric progression: 1, -1/2, 1/4, - 1/8, .., n terms

Find the sum of indicated terms of each of the following geometric progression: x^2,x^4,x^6,…,n terms (x!=+-1)

Find the sum of indicated terms of each of the following geometric progression: 1+2/3+4/9+….,n terms and 5 terms

Find the sum to indicated number of terms in each of the geometric progressions: x^(3),x^(5),x^(7),...n terms (ifx!=+-1)

Find the sum to indicated number of terms in each of the geometric progressions: 1,-a,a^(2)-a^(3),...n terms quad ( if a!=-1)

Find the sum of the indicated number of terms of each of the following geometric progressions: a. (i) sqrt(7),sqrt(21),3sqrt(7) ,…………..n terms. (ii) 2,-1/2,1/8 , …………….n terms 12 terms (iii) 1,1/3,1/9, ………………..,n terms 5 terms b. (i) x^(3),x^(5),x^(7) .......,n terms (x!= +-1) (ii) 1,-a,a^(2),-a^(3) ........, n terms (a!= -1) (iii) x^(2)-y^(2),x-y,(x-y)/(x+y) ................ , n terms (x+y!=1) .

Find the sum of indicated terms of each of the following geometric progressions : (i) 2, 4, 8, 16 ,…, 20 terms (ii) 1 , (-2)/(3) , (4)/(9) , (-8)/(27) ,…, 10 terms

Find the sum of 20 terms of the A.P.1,4,7,10..

Find the sum to indicated number of terms in each of the geometric progressions in Questions 7 to 10 : 1,-a,a^(2),-a^(3),..."n terms "(ifa ne-1)

Find the sum to n term of the A.P.1,3,5,7.....