Home
Class 11
MATHS
If a ,b ,c are in A.P., then prove that:...

If `a ,b ,c` are in A.P., then prove that: `(a-c)^2=4(b^2-a c)` `a^3+4b^3+c^3=3b(a^2+c^2)`

Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (e) LATQ|8 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (f) SATQ|6 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (c) LATQ|17 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Chapter Test|11 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are in AP,then prove that (a-c)^(2)=4(b^(2)-ac)

If a,b,c are in A.P.then prove that: (a-c)^(2)=4(b^(2)-ac)a^(3)+4b^(3)+c^(3)=3b(a^(2)+c^(2))

if a,b,c are in AP, prove that (a-c)^(2) = 4( b^(2) -ac)

If a,b,c are in A.P. prove that (a-c)^(2)=4(a-b)(b-c)

If a,b,c are in A.P., prove that a^(2)+c^(2)-2bc=2a(b-c) .

If a,b,c are in A.P.,prove that 8b^(3)-a^(3)-c^(3)=3ac(a+c)

If a, b, c are in A.P., then prove that : (i) ab+bc=2b^(2) (ii) (a-c)^(2)=4(b^(2)-ac) (iii) a^(2)+c^(2)+4ca=2(ab+bc+ca).

If a,b,c are in A.P.,prove that: (a-c)^(2)=4(a-b)(b-c)a^(2)+c^(2)+4ac=2(ab+bc+ca)a^(3)+c^(3)+6abc=8b^(3)

If a, b, c are in A.P., prove that a^(3)+4b^(3)+c^(3)=3b(a^(2)+c^(2)).