Home
Class 11
MATHS
Find the sum of the indicated number of ...

Find the sum of the indicated number of terms of each of the following geometric progressions:
a. (i) `sqrt(7),sqrt(21),3sqrt(7)`,…………..n terms.
(ii) `2,-1/2,1/8`, …………….n terms 12 terms
(iii)`1,1/3,1/9,`………………..,n terms 5 terms
b. (i) `x^(3),x^(5),x^(7)`.......,n terms `(x!= +-1)`
(ii) `1,-a,a^(2),-a^(3)`........, n terms `(a!= -1)`
(iii) `x^(2)-y^(2),x-y,(x-y)/(x+y)` ................ , n terms `(x+y!=1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the indicated number of terms of each of the geometric progressions (GPs), we will use the formula for the sum of the first n terms of a GP: \[ S_n = \frac{a(1 - r^n)}{1 - r} \quad \text{(if } r \neq 1\text{)} \] Where: - \( S_n \) is the sum of the first n terms, - \( a \) is the first term, - \( r \) is the common ratio, - \( n \) is the number of terms. Now, let's solve each part step by step. ### Part a #### (i) \( \sqrt{7}, \sqrt{21}, 3\sqrt{7}, \ldots \) (n terms) 1. **Identify \( a \) and \( r \)**: - \( a = \sqrt{7} \) - To find \( r \), we calculate \( r = \frac{T_2}{T_1} = \frac{\sqrt{21}}{\sqrt{7}} = \sqrt{3} \). 2. **Apply the formula**: \[ S_n = \frac{\sqrt{7}(1 - (\sqrt{3})^n)}{1 - \sqrt{3}} \] 3. **Rationalize the denominator**: \[ S_n = \frac{\sqrt{7}(1 - (\sqrt{3})^n)}{1 - \sqrt{3}} \cdot \frac{1 + \sqrt{3}}{1 + \sqrt{3}} = \frac{\sqrt{7}(1 - (\sqrt{3})^n)(1 + \sqrt{3})}{(1 - 3)} = \frac{\sqrt{7}(1 - (\sqrt{3})^n)(1 + \sqrt{3})}{-2} \] 4. **Final expression**: \[ S_n = -\frac{\sqrt{7}(1 - (\sqrt{3})^n)(1 + \sqrt{3})}{2} \] #### (ii) \( 2, -\frac{1}{2}, \frac{1}{8}, \ldots \) (12 terms) 1. **Identify \( a \) and \( r \)**: - \( a = 2 \) - \( r = \frac{-\frac{1}{2}}{2} = -\frac{1}{4} \) 2. **Apply the formula**: \[ S_{12} = \frac{2(1 - (-\frac{1}{4})^{12})}{1 - (-\frac{1}{4})} \] 3. **Simplify**: \[ S_{12} = \frac{2(1 - \frac{1}{4^{12}})}{1 + \frac{1}{4}} = \frac{2(1 - \frac{1}{4^{12}})}{\frac{5}{4}} = \frac{8(1 - \frac{1}{4^{12}})}{5} \] #### (iii) \( 1, \frac{1}{3}, \frac{1}{9}, \ldots \) (5 terms) 1. **Identify \( a \) and \( r \)**: - \( a = 1 \) - \( r = \frac{\frac{1}{3}}{1} = \frac{1}{3} \) 2. **Apply the formula**: \[ S_5 = \frac{1(1 - (\frac{1}{3})^5)}{1 - \frac{1}{3}} = \frac{1(1 - \frac{1}{243})}{\frac{2}{3}} = \frac{3(1 - \frac{1}{243})}{2} \] 3. **Final expression**: \[ S_5 = \frac{3 \cdot \frac{242}{243}}{2} = \frac{726}{486} = \frac{121}{81} \] ### Part b #### (i) \( x^3, x^5, x^7, \ldots \) (n terms) 1. **Identify \( a \) and \( r \)**: - \( a = x^3 \) - \( r = \frac{x^5}{x^3} = x^2 \) 2. **Apply the formula**: \[ S_n = \frac{x^3(1 - (x^2)^n)}{1 - x^2} \] #### (ii) \( 1, -a, a^2, -a^3, \ldots \) (n terms) 1. **Identify \( a \) and \( r \)**: - \( a = 1 \) - \( r = -a \) 2. **Apply the formula**: \[ S_n = \frac{1(1 - (-a)^n)}{1 - (-a)} = \frac{1 - (-a)^n}{1 + a} \] #### (iii) \( x^2 - y^2, x - y, \frac{x - y}{x + y}, \ldots \) (n terms) 1. **Identify \( a \) and \( r \)**: - \( a = x^2 - y^2 \) - \( r = \frac{x - y}{x^2 - y^2} = \frac{1}{x + y} \) 2. **Apply the formula**: \[ S_n = \frac{(x^2 - y^2)(1 - (\frac{1}{x + y})^n)}{1 - \frac{1}{x + y}} = \frac{(x^2 - y^2)(1 - (\frac{1}{x + y})^n)(x + y)}{(x + y - 1)} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (h) LATQ|13 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (i) LATQ|12 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (g) LATQ|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Chapter Test|11 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos

Similar Questions

Explore conceptually related problems

Find the sum to indicated number of terms in each of the geometric progressions in Questions 7 to 10 : sqrt(7),sqrt(21),3sqrt(7),..."n terms."

Find the sum of indicated terms of each of the following geometric progression: 1, 1/3, 1/9, 1/27, …., n terms

Find the sum of indicated terms of each of the following geometric progression: x^2,x^4,x^6,…,n terms (x!=+-1)

Find the sum of indicated terms of each of the following geometric progression: 1+2/3+4/9+….,n terms and 5 terms

Find the sum of indicated terms of each of the following geometric progression: 1, -1/2, 1/4, - 1/8, .., n terms

Find the sum to indicated number of terms in each of the geometric progressions: x^(3),x^(5),x^(7),...n terms (ifx!=+-1)

Find the sum to indicated number of terms in each of the geometric progressions: 1,-a,a^(2)-a^(3),...n terms quad ( if a!=-1)

Find the sum to indicated number of terms in each of the geometric progressions in Questions 7 to 10 : x^(3),x^(5),x^(7),..." n terms "(if x nepm1)

Find the sum to indicated number of terms in each of the geometric progressions in Questions 7 to 10 : 1,-a,a^(2),-a^(3),..."n terms "(ifa ne-1)

Find the sum of indicated number of terms of each of the following A.P.'s (i) 5,2,-1,-4,-7,…………., n terms (ii) -1,1/4,3/2,…………..,81 terms (iii) 2,4,6,…………,100 terms (iv) -0.5,-1.0,-1.5,……………, 10 terms ; 50 terms (v) x+y,x-y,x-3y,..................22 terms