To find the sum of the indicated number of terms of each of the geometric progressions (GPs), we will use the formula for the sum of the first n terms of a GP:
\[
S_n = \frac{a(1 - r^n)}{1 - r} \quad \text{(if } r \neq 1\text{)}
\]
Where:
- \( S_n \) is the sum of the first n terms,
- \( a \) is the first term,
- \( r \) is the common ratio,
- \( n \) is the number of terms.
Now, let's solve each part step by step.
### Part a
#### (i) \( \sqrt{7}, \sqrt{21}, 3\sqrt{7}, \ldots \) (n terms)
1. **Identify \( a \) and \( r \)**:
- \( a = \sqrt{7} \)
- To find \( r \), we calculate \( r = \frac{T_2}{T_1} = \frac{\sqrt{21}}{\sqrt{7}} = \sqrt{3} \).
2. **Apply the formula**:
\[
S_n = \frac{\sqrt{7}(1 - (\sqrt{3})^n)}{1 - \sqrt{3}}
\]
3. **Rationalize the denominator**:
\[
S_n = \frac{\sqrt{7}(1 - (\sqrt{3})^n)}{1 - \sqrt{3}} \cdot \frac{1 + \sqrt{3}}{1 + \sqrt{3}} = \frac{\sqrt{7}(1 - (\sqrt{3})^n)(1 + \sqrt{3})}{(1 - 3)} = \frac{\sqrt{7}(1 - (\sqrt{3})^n)(1 + \sqrt{3})}{-2}
\]
4. **Final expression**:
\[
S_n = -\frac{\sqrt{7}(1 - (\sqrt{3})^n)(1 + \sqrt{3})}{2}
\]
#### (ii) \( 2, -\frac{1}{2}, \frac{1}{8}, \ldots \) (12 terms)
1. **Identify \( a \) and \( r \)**:
- \( a = 2 \)
- \( r = \frac{-\frac{1}{2}}{2} = -\frac{1}{4} \)
2. **Apply the formula**:
\[
S_{12} = \frac{2(1 - (-\frac{1}{4})^{12})}{1 - (-\frac{1}{4})}
\]
3. **Simplify**:
\[
S_{12} = \frac{2(1 - \frac{1}{4^{12}})}{1 + \frac{1}{4}} = \frac{2(1 - \frac{1}{4^{12}})}{\frac{5}{4}} = \frac{8(1 - \frac{1}{4^{12}})}{5}
\]
#### (iii) \( 1, \frac{1}{3}, \frac{1}{9}, \ldots \) (5 terms)
1. **Identify \( a \) and \( r \)**:
- \( a = 1 \)
- \( r = \frac{\frac{1}{3}}{1} = \frac{1}{3} \)
2. **Apply the formula**:
\[
S_5 = \frac{1(1 - (\frac{1}{3})^5)}{1 - \frac{1}{3}} = \frac{1(1 - \frac{1}{243})}{\frac{2}{3}} = \frac{3(1 - \frac{1}{243})}{2}
\]
3. **Final expression**:
\[
S_5 = \frac{3 \cdot \frac{242}{243}}{2} = \frac{726}{486} = \frac{121}{81}
\]
### Part b
#### (i) \( x^3, x^5, x^7, \ldots \) (n terms)
1. **Identify \( a \) and \( r \)**:
- \( a = x^3 \)
- \( r = \frac{x^5}{x^3} = x^2 \)
2. **Apply the formula**:
\[
S_n = \frac{x^3(1 - (x^2)^n)}{1 - x^2}
\]
#### (ii) \( 1, -a, a^2, -a^3, \ldots \) (n terms)
1. **Identify \( a \) and \( r \)**:
- \( a = 1 \)
- \( r = -a \)
2. **Apply the formula**:
\[
S_n = \frac{1(1 - (-a)^n)}{1 - (-a)} = \frac{1 - (-a)^n}{1 + a}
\]
#### (iii) \( x^2 - y^2, x - y, \frac{x - y}{x + y}, \ldots \) (n terms)
1. **Identify \( a \) and \( r \)**:
- \( a = x^2 - y^2 \)
- \( r = \frac{x - y}{x^2 - y^2} = \frac{1}{x + y} \)
2. **Apply the formula**:
\[
S_n = \frac{(x^2 - y^2)(1 - (\frac{1}{x + y})^n)}{1 - \frac{1}{x + y}} = \frac{(x^2 - y^2)(1 - (\frac{1}{x + y})^n)(x + y)}{(x + y - 1)}
\]