Home
Class 11
MATHS
Sum of n terms: (i) 5+55+555+………….. ...

Sum of n terms:
(i) `5+55+555+`…………..
(ii) `9+99+999+`…………..
(iii) `3+33+333+`………………
(v) `8+88+888+`…………….

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the first n terms of the given series, we will analyze each part step by step. ### Part (i): Sum of the series \(5 + 55 + 555 + \ldots\) 1. **Identify the pattern**: The terms can be expressed as: - \(5 = 5\) - \(55 = 5 \times 11\) - \(555 = 5 \times 111\) - Continuing this, we can express the nth term \(T_n\) as: \[ T_n = 5 \times (10^0 + 10^1 + 10^2 + \ldots + 10^{n-1}) \] 2. **Sum of the geometric series**: The sum of the geometric series \(10^0 + 10^1 + 10^2 + \ldots + 10^{n-1}\) can be calculated using the formula: \[ S_n = \frac{a(r^n - 1)}{r - 1} \] where \(a = 1\) (the first term), \(r = 10\) (the common ratio), and \(n\) is the number of terms. \[ S_n = \frac{1(10^n - 1)}{10 - 1} = \frac{10^n - 1}{9} \] 3. **Substituting back**: Therefore, the sum of the first n terms becomes: \[ S_n = 5 \times \frac{10^n - 1}{9} = \frac{5(10^n - 1)}{9} \] ### Part (ii): Sum of the series \(9 + 99 + 999 + \ldots\) 1. **Identify the pattern**: The terms can be expressed as: - \(9 = 9\) - \(99 = 9 \times 11\) - \(999 = 9 \times 111\) - The nth term \(T_n\) can be expressed as: \[ T_n = 9 \times (10^0 + 10^1 + 10^2 + \ldots + 10^{n-1}) \] 2. **Using the sum of the geometric series**: \[ S_n = \frac{10^n - 1}{9} \] 3. **Substituting back**: \[ S_n = 9 \times \frac{10^n - 1}{9} = 10^n - 1 \] ### Part (iii): Sum of the series \(3 + 33 + 333 + \ldots\) 1. **Identify the pattern**: The terms can be expressed as: - \(3 = 3\) - \(33 = 3 \times 11\) - \(333 = 3 \times 111\) - The nth term \(T_n\) can be expressed as: \[ T_n = 3 \times (10^0 + 10^1 + 10^2 + \ldots + 10^{n-1}) \] 2. **Using the sum of the geometric series**: \[ S_n = \frac{10^n - 1}{9} \] 3. **Substituting back**: \[ S_n = 3 \times \frac{10^n - 1}{9} = \frac{3(10^n - 1)}{9} = \frac{10^n - 1}{3} \] ### Part (iv): Sum of the series \(8 + 88 + 888 + \ldots\) 1. **Identify the pattern**: The terms can be expressed as: - \(8 = 8\) - \(88 = 8 \times 11\) - \(888 = 8 \times 111\) - The nth term \(T_n\) can be expressed as: \[ T_n = 8 \times (10^0 + 10^1 + 10^2 + \ldots + 10^{n-1}) \] 2. **Using the sum of the geometric series**: \[ S_n = \frac{10^n - 1}{9} \] 3. **Substituting back**: \[ S_n = 8 \times \frac{10^n - 1}{9} = \frac{8(10^n - 1)}{9} \] ### Final Answers: - (i) \(S_n = \frac{5(10^n - 1)}{9}\) - (ii) \(S_n = 10^n - 1\) - (iii) \(S_n = \frac{10^n - 1}{3}\) - (iv) \(S_n = \frac{8(10^n - 1)}{9}\)
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (i) LATQ|12 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (j) LATQ|11 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (h) SATQ|5 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Chapter Test|11 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos

Similar Questions

Explore conceptually related problems

Sum of n terms: (i) 0.7 +0.77+0.777+ ………….. (ii) 0.6+0.66+0.666+ …………. (iii) 0.3+0.33+0.333+ ………….. (iv) 0.5+0.55+0.555+ ………….

Sum to 25 terms of the series 0.5+0.55 +0.555+…is :

Find the sum of n terms of series : 3 + 5 + 9 + 15 + 23 + ………… n terms

Find the sum to n terms (i) 9 + 99 + 999 + … (ii) 0.2 + 0.22 + 0.222 + …

Fill in the blanks : (i) (-3) + (-9) = ……. (ii) (-7) + (-8) = ….. (iii) (-9) + 16 = ….. (iv) (-13) + 25 = ….. (v) 8 + (-17) = ……….. (vi) 2 + (-12) = ……….

Sum of the series 0.5+0.55+0.555+.... upto n terms is

Find the sum to n terms (i) 1 + (1)/(3) + (1)/(9)+... (ii) 5 + 55 + 555+ ....

The sum of the first 10 terms of the series 9+99+999 +….., is