Home
Class 11
MATHS
Sum of n terms: (i) 0.7 +0.77+0.777+……...

Sum of n terms:
`(i) 0.7 +0.77+0.777+`…………..
(ii) `0.6+0.66+0.666+`………….
(iii) `0.3+0.33+0.333+`…………..
(iv) `0.5+0.55+0.555+`………….

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the first n terms for each of the given series, we can follow a systematic approach. Let's analyze each series step by step. ### (i) Series: \(0.7 + 0.77 + 0.777 + \ldots\) 1. **Identify the pattern**: The series can be rewritten as: \[ S_n = 0.7 + 0.77 + 0.777 + \ldots \] Each term can be expressed as: \[ 0.7 = \frac{7}{10}, \quad 0.77 = \frac{77}{100}, \quad 0.777 = \frac{777}{1000}, \ldots \] The nth term can be expressed as: \[ a_n = \frac{7 \cdots 7}{10^n} \quad \text{(n times 7)} \] 2. **Rewrite the series**: Notice that: \[ S_n = \frac{7}{10} + \frac{77}{100} + \frac{777}{1000} = \frac{7}{10} \left(1 + 0.1 + 0.01 + \ldots + 0.1^{n-1}\right) \] 3. **Use the formula for the sum of a geometric series**: The sum of the first n terms of a geometric series is given by: \[ S = a \frac{1 - r^n}{1 - r} \] where \(a\) is the first term and \(r\) is the common ratio. Here, \(a = 1\) and \(r = 0.1\): \[ S_n = \frac{7}{10} \cdot \frac{1 - (0.1)^n}{1 - 0.1} = \frac{7}{10} \cdot \frac{1 - (0.1)^n}{0.9} \] 4. **Simplify the expression**: \[ S_n = \frac{7}{9} \left(1 - 0.1^n\right) \] ### (ii) Series: \(0.6 + 0.66 + 0.666 + \ldots\) 1. **Identify the pattern**: Similar to the first series: \[ S_n = 0.6 + 0.66 + 0.666 + \ldots \] Each term can be expressed as: \[ 0.6 = \frac{6}{10}, \quad 0.66 = \frac{66}{100}, \quad 0.666 = \frac{666}{1000}, \ldots \] 2. **Rewrite the series**: \[ S_n = \frac{6}{10} \left(1 + 0.1 + 0.01 + \ldots + 0.1^{n-1}\right) \] 3. **Use the sum formula**: \[ S_n = \frac{6}{10} \cdot \frac{1 - (0.1)^n}{0.9} = \frac{6}{9} \left(1 - 0.1^n\right) \] 4. **Simplify**: \[ S_n = \frac{2}{3} \left(1 - 0.1^n\right) \] ### (iii) Series: \(0.3 + 0.33 + 0.333 + \ldots\) 1. **Identify the pattern**: \[ S_n = 0.3 + 0.33 + 0.333 + \ldots \] Each term can be expressed as: \[ 0.3 = \frac{3}{10}, \quad 0.33 = \frac{33}{100}, \quad 0.333 = \frac{333}{1000}, \ldots \] 2. **Rewrite the series**: \[ S_n = \frac{3}{10} \left(1 + 0.1 + 0.01 + \ldots + 0.1^{n-1}\right) \] 3. **Use the sum formula**: \[ S_n = \frac{3}{10} \cdot \frac{1 - (0.1)^n}{0.9} = \frac{3}{9} \left(1 - 0.1^n\right) \] 4. **Simplify**: \[ S_n = \frac{1}{3} \left(1 - 0.1^n\right) \] ### (iv) Series: \(0.5 + 0.55 + 0.555 + \ldots\) 1. **Identify the pattern**: \[ S_n = 0.5 + 0.55 + 0.555 + \ldots \] Each term can be expressed as: \[ 0.5 = \frac{5}{10}, \quad 0.55 = \frac{55}{100}, \quad 0.555 = \frac{555}{1000}, \ldots \] 2. **Rewrite the series**: \[ S_n = \frac{5}{10} \left(1 + 0.1 + 0.01 + \ldots + 0.1^{n-1}\right) \] 3. **Use the sum formula**: \[ S_n = \frac{5}{10} \cdot \frac{1 - (0.1)^n}{0.9} = \frac{5}{9} \left(1 - 0.1^n\right) \] 4. **Simplify**: \[ S_n = \frac{5}{9} \left(1 - 0.1^n\right) \] ### Final Results: 1. \( S_n = \frac{7}{9} \left(1 - 0.1^n\right) \) 2. \( S_n = \frac{2}{3} \left(1 - 0.1^n\right) \) 3. \( S_n = \frac{1}{3} \left(1 - 0.1^n\right) \) 4. \( S_n = \frac{5}{9} \left(1 - 0.1^n\right) \)
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (i) LATQ|12 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (j) LATQ|11 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (h) SATQ|5 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Chapter Test|11 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos

Similar Questions

Explore conceptually related problems

0.5, 0.55, 0.65, 0.8, ?

0.5, 0.55, 0.65, 0.8 , ?

Sum to n terms : 0.4+0.44+0.444+... .

The sum of 10 terms of the series 0.7+0.77+0.777+....... is

The sum of first 20 terms of the sequence 0.7,0.77,0.777..... is

Sum to 25 terms of the series 0.5+0.55 +0.555+…is :

Find the sum of first n terms of the series 0.7 + 0.77 + 0.777 + …..