Home
Class 11
MATHS
(i) 1+2x+3x^(2)+4x^(3)I+………….. When |x|l...

(i) `1+2x+3x^(2)+4x^(3)I+`………….. When `|x|lt1`
(ii) `1+3x+5x^(2)+7x^(3)+`…………. When `|x|lt1` (iii) `1+4x+7x^(2)+10x^(3)+`……………..when`|x|lt`1.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series, we will approach each part step by step. ### Part (i): Series `1 + 2x + 3x^2 + 4x^3 + ...` 1. **Define the series**: Let \( S = 1 + 2x + 3x^2 + 4x^3 + \ldots \) 2. **Multiply by \( x \)**: Multiply the entire series by \( x \): \[ Sx = 2x + 3x^2 + 4x^3 + 5x^4 + \ldots \] 3. **Subtract the two equations**: Now, subtract \( Sx \) from \( S \): \[ S - Sx = 1 + (2x - 2x) + (3x^2 - 3x^2) + (4x^3 - 4x^3) + \ldots \] This simplifies to: \[ S(1 - x) = 1 + x + x^2 + x^3 + \ldots \] 4. **Recognize the geometric series**: The right-hand side is a geometric series with first term 1 and common ratio \( x \): \[ 1 + x + x^2 + x^3 + \ldots = \frac{1}{1 - x} \quad \text{(for } |x| < 1\text{)} \] 5. **Substitute back**: Now we have: \[ S(1 - x) = \frac{1}{1 - x} \] 6. **Solve for \( S \)**: \[ S = \frac{1}{(1 - x)^2} \] ### Part (ii): Series `1 + 3x + 5x^2 + 7x^3 + ...` 1. **Define the series**: Let \( S = 1 + 3x + 5x^2 + 7x^3 + \ldots \) 2. **Identify the general term**: The general term can be expressed as \( (2n - 1)x^{n-1} \). 3. **Multiply by \( x \)**: \[ Sx = 3x + 5x^2 + 7x^3 + \ldots \] 4. **Subtract**: \[ S - Sx = 1 + (3x - 2x) + (5x^2 - 3x^2) + (7x^3 - 5x^3) + \ldots \] This simplifies to: \[ S(1 - x) = 1 + x + 2x^2 + 3x^3 + \ldots \] 5. **Recognize the new series**: The right-hand side can be expressed as: \[ 1 + x + 2x^2 + 3x^3 + \ldots = \frac{1 + x}{(1 - x)^2} \] 6. **Substitute back**: \[ S(1 - x) = \frac{1 + x}{(1 - x)^2} \] 7. **Solve for \( S \)**: \[ S = \frac{1 + x}{(1 - x)^3} \] ### Part (iii): Series `1 + 4x + 7x^2 + 10x^3 + ...` 1. **Define the series**: Let \( S = 1 + 4x + 7x^2 + 10x^3 + \ldots \) 2. **Identify the general term**: The general term can be expressed as \( (3n - 2)x^{n-1} \). 3. **Multiply by \( x \)**: \[ Sx = 4x + 7x^2 + 10x^3 + \ldots \] 4. **Subtract**: \[ S - Sx = 1 + (4x - 3x) + (7x^2 - 4x^2) + (10x^3 - 7x^3) + \ldots \] This simplifies to: \[ S(1 - x) = 1 + x + 3x^2 + 6x^3 + \ldots \] 5. **Recognize the new series**: The right-hand side can be expressed as: \[ 1 + x + 3x^2 + 6x^3 + \ldots = \frac{1 + 3x}{(1 - x)^3} \] 6. **Substitute back**: \[ S(1 - x) = \frac{1 + 3x}{(1 - x)^3} \] 7. **Solve for \( S \)**: \[ S = \frac{1 + 3x}{(1 - x)^4} \] ### Final Answers: 1. \( S = \frac{1}{(1 - x)^2} \) for part (i) 2. \( S = \frac{1 + x}{(1 - x)^3} \) for part (ii) 3. \( S = \frac{1 + 3x}{(1 - x)^4} \) for part (iii)
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (m) LATQ|10 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise ADDITIONAL QUESTIONS|3 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (j) LATQ|11 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Chapter Test|11 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos

Similar Questions

Explore conceptually related problems

(x-1) / (x ^ (2) -4x + 3) <1

Find the quotient when p(x) = 3x^(4)+5x^(3) - 7x^(2) + 2x + 2 is divided by (x^(2)+3x + 1) .

1*2+2*3x+3*4x^(2)+.... oo (| x | <1)

(1) / (x + 1)-(2) / (x ^ (4) -x + 1) <(1-2x) / (x ^ (3) +1)

3(1 - x ) lt 2 (x + 4)

Sum 1+3x+5x^(2)+7x^(3)+9x^(4)+...... to oo is (x<1)

Value of lim_(x rarr0)(ln(1+2x-3x^(2)+4x^(3)))/(ln(1-5x+6x^(2)-7x^(3))) is

Evaluate Lt {x rarr oo} (3x ^ (3) -4x ^ (2) + 6x-1) / (2x ^ (3) + x ^ (2) -5x + 7)

Evaluate: (i) x^(2)+4x+7 when x=2+sqrt(-3) (ii) 2x^(3)-9x^(2)-10x+13 when x=3+sqrt(-5)