Home
Class 11
MATHS
Find the sum to infinity of the followin...

Find the sum to infinity of the following series:
(i) `2+3/2+1+5/8+`…………
(ii) `1+2/3+3/(3^(2))+4/(3^(3))+`………..
(iii) `1-3/2+5/4-7/8+`……..
(iv) `1-2/3+3/(3^(2))-4/(3^(3))+5/(3^(4))-`………..

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum to infinity of the given series, we will use the formula for the sum of an Arithmetic-Geometric Progression (AGP): \[ S_{\infty} = \frac{a \cdot b}{1 - r} + \frac{d \cdot b \cdot r}{(1 - r)^2} \] where: - \( a \) is the first term of the arithmetic sequence, - \( d \) is the common difference of the arithmetic sequence, - \( b \) is the first term of the geometric sequence, - \( r \) is the common ratio of the geometric sequence. ### (i) Series: \( 2 + \frac{3}{2} + 1 + \frac{5}{8} + \ldots \) 1. Identify the arithmetic sequence: - First term \( a = 2 \) - Common difference \( d = 1 - \frac{3}{2} = -\frac{1}{2} \) 2. Identify the geometric sequence: - First term \( b = 1 \) - Common ratio \( r = \frac{1}{2} \) 3. Substitute into the formula: \[ S_{\infty} = \frac{2 \cdot 1}{1 - \frac{1}{2}} + \frac{-\frac{1}{2} \cdot 1 \cdot \frac{1}{2}}{(1 - \frac{1}{2})^2} \] \[ = \frac{2}{\frac{1}{2}} - \frac{\frac{1}{4}}{\frac{1}{4}} = 4 - 1 = 3 \] ### (ii) Series: \( 1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \ldots \) 1. Identify the arithmetic sequence: - First term \( a = 1 \) - Common difference \( d = 1 \) 2. Identify the geometric sequence: - First term \( b = 1 \) - Common ratio \( r = \frac{1}{3} \) 3. Substitute into the formula: \[ S_{\infty} = \frac{1 \cdot 1}{1 - \frac{1}{3}} + \frac{1 \cdot 1 \cdot \frac{1}{3}}{(1 - \frac{1}{3})^2} \] \[ = \frac{1}{\frac{2}{3}} + \frac{\frac{1}{3}}{\left(\frac{2}{3}\right)^2} = \frac{3}{2} + \frac{\frac{1}{3}}{\frac{4}{9}} = \frac{3}{2} + \frac{3}{4} = \frac{6}{4} + \frac{3}{4} = \frac{9}{4} \] ### (iii) Series: \( 1 - \frac{3}{2} + \frac{5}{4} - \frac{7}{8} + \ldots \) 1. Identify the arithmetic sequence: - First term \( a = 1 \) - Common difference \( d = 2 \) 2. Identify the geometric sequence: - First term \( b = 1 \) - Common ratio \( r = -\frac{1}{2} \) 3. Substitute into the formula: \[ S_{\infty} = \frac{1 \cdot 1}{1 - (-\frac{1}{2})} + \frac{2 \cdot 1 \cdot (-\frac{1}{2})}{(1 - (-\frac{1}{2}))^2} \] \[ = \frac{1}{\frac{3}{2}} + \frac{-1}{\left(\frac{3}{2}\right)^2} = \frac{2}{3} - \frac{-1}{\frac{9}{4}} = \frac{2}{3} + \frac{4}{9} \] \[ = \frac{6}{9} + \frac{4}{9} = \frac{10}{9} \] ### (iv) Series: \( 1 - \frac{2}{3} + \frac{3}{3^2} - \frac{4}{3^3} + \ldots \) 1. Identify the arithmetic sequence: - First term \( a = 1 \) - Common difference \( d = 1 \) 2. Identify the geometric sequence: - First term \( b = 1 \) - Common ratio \( r = -\frac{1}{3} \) 3. Substitute into the formula: \[ S_{\infty} = \frac{1 \cdot 1}{1 - (-\frac{1}{3})} + \frac{1 \cdot 1 \cdot (-\frac{1}{3})}{(1 - (-\frac{1}{3}))^2} \] \[ = \frac{1}{\frac{4}{3}} + \frac{-\frac{1}{3}}{\left(\frac{4}{3}\right)^2} = \frac{3}{4} - \frac{-\frac{1}{3}}{\frac{16}{9}} = \frac{3}{4} + \frac{3}{16} \] \[ = \frac{12}{16} + \frac{3}{16} = \frac{15}{16} \] ### Summary of Results: 1. \( S_{\infty} \) for (i) = 3 2. \( S_{\infty} \) for (ii) = \( \frac{9}{4} \) 3. \( S_{\infty} \) for (iii) = \( \frac{10}{9} \) 4. \( S_{\infty} \) for (iv) = \( \frac{15}{16} \)
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (m) LATQ|10 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise ADDITIONAL QUESTIONS|3 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (j) LATQ|11 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Chapter Test|11 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos

Similar Questions

Explore conceptually related problems

Find the sum to n terms of the following (1-2) series: (i) 1+3/2+5/(2^(2))+7/(2^(3))+ ………….. (ii) 1+2/3+3/(3^(2))+4/(3^(3))+ …………

Find the sum to n terms of the series 1.2.3+2.3.4+3.4.5+…

Find the sum of the following series to infinity: 2/5+3/5^(2)+2/5^(3)+3/5^(4)+oo

Find the sum of the following series to infinity: 1-(1)/(3)+(1)/(3^(2))-(1)/(3^(3))+(1)/(3^(4))+oo

Find the sum of n terms of the series 1*2*3+2*3*4+3*4*5.........

Find the sum of the following infinite series (1)/(2)((1)/(5))^(2)+(2)/(3)((1)/(5))^(3)+(3)/(4)((1)/(5))^(4)+...

Find the sum of the following series to infinity: (1)/(3)+(1)/(5^(2))+(1)/(3^(3))+(1)/(5^(4))+(1)/(3^(5))+(1)/(5^(6))+oo

Obtain the differential coefficient of the following : (i) (x-1) (2x+5) (ii) (9x^(3)-8x+7)(3x^(2)+5) (iii) 1/(2x+1) (iv) (3x+4)/(4x+5) (v) (x^(2))/(x^(3)+1)