Home
Class 11
MATHS
11^(3)+12^(3)+13^(3)+…………………. +20^(3) is...

`11^(3)+12^(3)+13^(3)+`…………………. `+20^(3)` is

A

an even integer

B

an odd integer divisible by 5

C

multiple of 10

D

odd integer but not a multiple of 5.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 11^3 + 12^3 + 13^3 + \ldots + 20^3 \), we can use the formula for the sum of cubes and adjust it for the specific range we need. ### Step-by-Step Solution: 1. **Identify the Range**: We need to find the sum of cubes from \( 11 \) to \( 20 \). 2. **Use the Sum of Cubes Formula**: The sum of the first \( n \) cubes is given by: \[ S_n = \left( \frac{n(n+1)}{2} \right)^2 \] This means we can calculate the sum of cubes from \( 1^3 \) to \( 20^3 \) and subtract the sum from \( 1^3 \) to \( 10^3 \). 3. **Calculate \( S_{20} \)**: \[ S_{20} = \left( \frac{20 \times 21}{2} \right)^2 = (210)^2 = 44100 \] 4. **Calculate \( S_{10} \)**: \[ S_{10} = \left( \frac{10 \times 11}{2} \right)^2 = (55)^2 = 3025 \] 5. **Subtract \( S_{10} \) from \( S_{20} \)**: \[ S_{11 \text{ to } 20} = S_{20} - S_{10} = 44100 - 3025 = 41075 \] 6. **Final Result**: \[ 11^3 + 12^3 + 13^3 + \ldots + 20^3 = 41075 \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|10 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise TRUE/FALSE|4 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise EXERCISE 9 (m) LATQ|10 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Chapter Test|11 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos

Similar Questions

Explore conceptually related problems

11^(3)+12^(3)+...+20^(3) is divisible by

x^(3)-13x-12

Check if lines with direction-cosines : lt (12)/(13) , - (3)/(13) , - (4)/(13) gt , lt (4)/(13) , (12)/(13), (3)/(13) gt , lt (3)/(13) , (4)/(13) , (12)/(13) gt are mutually perpendicular .

13-(12-6-:3)= ?

((13)^(3)+7^(3))/((13)^(2)+7^(2)-?)=20

If (x)/(a)=(y)/(b)=(z)/(c) , then prove that each ratio is equal to ((3x^(3)-11y^(3)+13z^(3))/(3a^(3)-11b^(3)+13c^(3)))^((1)/(3))

Simplify: 1/(1+(2/3)/(1+2/3+(8/9)/(1-2/3))) . (11)/(13) (b) (13)/(15) (c) (13)/(11) (d) (15)/(13)