Home
Class 12
MATHS
The condition that the circles x^(2)+y^(...

The condition that the circles `x^(2)+y^(2)+2ax+c=0, x^(2)+y^(2)+2by+c=0` may touch each other is

Promotional Banner

Similar Questions

Explore conceptually related problems

The condition that the circles x^(2)+y^(2)+2ax+2by+c=0, x^(2)+y^(2)+2bx+2ay+c=0 to touch each other is

Show that the circles x^(2) +y^(2) + 2ax + c=0 and x ^(2) + y^(2) + 2by + c=0 to touch each other if (1)/(a^(2)) + (1)/( b^(2)) = (1)/( c )

If the circles x^(2)+y^(2)+2ax+b=0 and x^(2)+y^(2)+2cx+b=0 touch each other (a!=c)

The circles x^(2)+y^(2)+2x-2y+1=0 and x^(2)+y^(2)-2x-2y+1=0 touch each other

The circles x^(2)+y^(2)+2x-2y+1=0 and x^(2)+y^(2)-2x-2y+1=0 touch each other

The two circles x^(2)+y^(2)=ax, x^(2)+y^(2)=c^(2) (c gt 0) touch each other if

The two circles x^(2)+y^(2)=ax, x^(2)+y^(2)=c^(2) (c gt 0) touch each other if

Show that the circles x^(2)+y^(2)+2ax+c=0 and x^(2)+y^(2)+2by+c=0 touch each other if 1/(a^(2))+1/(b^(2))=1/c