Home
Class 11
MATHS
Let the sum of n, 2n, 3n terms of an A.P...

Let the sum of n, 2n, 3n terms of an A.P. be `S_1,S_2`and `S_3`, respectively, show that `S_3=3(S_2-S_1)`.

Text Solution

Verified by Experts

The correct Answer is:
`S_(3)=3(S_(2)-S_(1))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 12|1 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 13|1 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 10|1 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Chapter Test|11 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos

Similar Questions

Explore conceptually related problems

Let the sum of n,2n,3n terms of an A.P.be S_(1),S_(2) and respectively,show that S_(3)=3(S_(2)-S_(1))

If the sum of n,2n,3n terms of an AP are S_(1),S_(2),S_(3) respectively.Prove that S_(3)=3(S_(2)-S_(1))

Knowledge Check

  • If S_(1), S_(2), S_(3) are the sums of n, 2n, 3n terms respectively of an A.P., then S_(3)//(S_(2) - S_(1))-

    A
    1
    B
    2
    C
    3
    D
    4
  • Similar Questions

    Explore conceptually related problems

    The sum of n,2n,3n terms of an A.P.are S_(1),S_(2),S_(3) respectively.Prove that S_(3)=3(S_(2)-S_(1))

    The sum of n,2n,3n terms of an A.P.are S_(1)S_(2),S_(3), respectively.Prove that S_(3)=3(S_(2)-S_(1))

    If the sum of n, 2n and infinite terms of G.P. are S_(1),S_(2) and S respectively, then prove that S_(1)(S_(1)-S)=S(S_(1)-S_(2)).

    If S_1, S_2, S_3 are the sums of first n natural numbers, their squares and cubes respectively, show that 9S_2^ 2=S_3(1+8S_1)dot

    If S_1, S_2, S_3 are the sums to n, 2n, 3n terms respectively for a GP then prove that S_1,S_2-S_1,S_3-S_2 are in GP.

    If S_(1),S_(2),S_(3) be respectively the sums of n,2n,3n terms of a G.P.,then prove that S_(1)^(2)+S_(2)^(2)=S_(1)(S_(2)+S_(3))

    If S_(1),S_(2),S_(3) be respectively the sums of n,2n and 3n terms of a G.P.,prove that S_(1)(S_(3)-S_(2))=(S_(2)-S_(1))^(2)