Home
Class 11
MATHS
Show that (1xx2^2+2xx3^2+dotdotdot+nxx(n...

Show that `(1xx2^2+2xx3^2+dotdotdot+nxx(n+1)^2)/(1^2xx2+2^2xx3+dotdotdot+n^2xx(n+1))=(3n+5)/(3n+1)dot`

Answer

Step by step text solution for Show that (1xx2^2+2xx3^2+dotdotdot+nxx(n+1)^2)/(1^2xx2+2^2xx3+dotdotdot+n^2xx(n+1))=(3n+5)/(3n+1)dot by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 35|1 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 36|1 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 33|1 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Chapter Test|11 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos

Similar Questions

Explore conceptually related problems

Show that (1xx2^(2)+2xx3^(2)+...+n xx(n+1)^(2))/(1^(2)xx2+2^(2)xx3+...+n^(2)xx(n+1))=(3n+5)/(3n+1)

Show that ln(4xx12xx36xx108... upto n terms )=2n ln2+(n(n-1))/(2)ln3

Knowledge Check

  • 2xx(16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+2))=?

    A
    `1`
    B
    `(1)/(3)`
    C
    `2`
    D
    `(1)/(2)`
  • (16 xx 2^(n+1) - 4 xx 2^(n))/(16 xx 2^(n+2) -2 xx 2^(n+2)) equals

    A
    `1/4`
    B
    `-1/2`
    C
    `-1/4`
    D
    `1/2`
  • If P(n ) is the statement , ' ' (1)/( 1xx 2) + (1)/( 2xx 3) +(1)/( 2 xx 3) +(1)/( 3 xx 4) + ….. + (1)/(n(n +1))= (n)/(n +1) ' then P(n) is true for

    A
    `n gt 2`
    B
    ` n in Z`
    C
    ` n in N`
    D
    No value of n
  • Similar Questions

    Explore conceptually related problems

    Prove that 1^1xx2^2xx3^3xx...xn^nlt ((2n+1)/(3))^((n(+1))/(2)

    Prove that 1^(1)xx2^(2)xx3^(3)xx xx n^(n)<=[(2n+1)/3]^(n(n+1)/2),n in N

    if (9^nxx3^2xx3^n-(27)^n)/((3^3)^5xx2^3)=1/(27), find the value of n

    Simiplify : (16xx2^(n+1)-4xx2^(n))/(16xx2^(n+2)-2xx2^(n+1))

    Find the value of (3^(n)xx3^(2n+1))/(9^(n)xx3^(n-1)) .