Home
Class 11
MATHS
Fill in the blanks: (i) sum(k=1)^(n)k=...

Fill in the blanks:
(i) `sum_(k=1)^(n)k=1+2+3+……………+n=`…………
(ii) `sum_(k=1)^(n)k^(2)=1^(2)+2^(2)+3^(2)+………………….+n^(2)=`………………..
(iii) `sum_(k=1)^(n)k^(3)=1^(3)+2^(3)+3^(3)+…………..+n^(3)=`…………………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given question, we need to fill in the blanks for three summation formulas. Let's go through each part step by step. ### Part (i) We need to find the sum of the first \( n \) natural numbers: \[ \sum_{k=1}^{n} k = 1 + 2 + 3 + \ldots + n \] The formula for the sum of the first \( n \) natural numbers is: \[ \sum_{k=1}^{n} k = \frac{n(n + 1)}{2} \] Thus, we fill in the blank: \[ \sum_{k=1}^{n} k = \frac{n(n + 1)}{2} \] ### Part (ii) Next, we need to find the sum of the squares of the first \( n \) natural numbers: \[ \sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \ldots + n^2 \] The formula for the sum of the squares of the first \( n \) natural numbers is: \[ \sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6} \] Thus, we fill in the blank: \[ \sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6} \] ### Part (iii) Finally, we need to find the sum of the cubes of the first \( n \) natural numbers: \[ \sum_{k=1}^{n} k^3 = 1^3 + 2^3 + 3^3 + \ldots + n^3 \] The formula for the sum of the cubes of the first \( n \) natural numbers is: \[ \sum_{k=1}^{n} k^3 = \left( \frac{n(n + 1)}{2} \right)^2 \] Thus, we fill in the blank: \[ \sum_{k=1}^{n} k^3 = \left( \frac{n(n + 1)}{2} \right)^2 \] ### Final Answers 1. \(\sum_{k=1}^{n} k = \frac{n(n + 1)}{2}\) 2. \(\sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6}\) 3. \(\sum_{k=1}^{n} k^3 = \left( \frac{n(n + 1)}{2} \right)^2\)
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise COMPETITION FILE|21 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise REVESION EXERCISE|43 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Chapter Test|11 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos

Similar Questions

Explore conceptually related problems

If sum_(k=1)^(n)k=210, find the value of sum_(k=1)^(n)k^(2).

sum_ (k = 1) ^ (n) (2 ^ (k) + 3 ^ (k-1))

If sum_(k=1)^(n)k=45, find the value of sum_(k=1)^(n)k^(3).

Evaluate : (i) sum_(n=1)^(10)(2+3^(n))" " (ii) sum_(k=1)^(n)[2^(k)+3^((k-1))]" " (iii) sum_(n=1)^(8) 5^(n)

S_(n)=sum_(k=1)^(n)(k^(2)+n^(2))/(n^(3)) and T_(n)=sum_(k=0)^(n-1)(k^(2)+n^(2))/(n^(3)),n in N then

a_(k)=(1)/(k(k+1)) for k=1,2,3,4,...n then (sum_(k=1)^(n)a_(k))^(2)=

Find the value of 3sum_(n=1)^(oo) {1/(pi) sum_(k=1)^(oo) cot^(-1)(1+2sqrt(sum_(r=1)^(k)r^(3)))}^(n)

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

prove that sum_(k=1)^(n)k2^(-k)=2[1-2^(-n)-n*2^(-(n+1)))

sum_(k=1)^(3n)6nC_(2k-1)(-3)^(k) is equal to