Home
Class 11
MATHS
If a(n)={(1+(-1)^(n))/23^(n)} then a(7)=...

If `a_(n)={(1+(-1)^(n))/23^(n)}` then `a_(7)=`……………………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( a_n = \frac{1 + (-1)^n}{23^n} \) and we need to find \( a_7 \), we can follow these steps: ### Step 1: Substitute \( n = 7 \) into the formula We start by substituting \( n = 7 \) into the expression for \( a_n \). \[ a_7 = \frac{1 + (-1)^7}{23^7} \] ### Step 2: Calculate \( (-1)^7 \) Next, we need to evaluate \( (-1)^7 \). Since 7 is an odd number, we have: \[ (-1)^7 = -1 \] ### Step 3: Substitute back into the equation Now we substitute \( (-1)^7 \) back into the equation for \( a_7 \): \[ a_7 = \frac{1 + (-1)}{23^7} \] ### Step 4: Simplify the numerator Now we simplify the numerator: \[ 1 + (-1) = 0 \] So, we have: \[ a_7 = \frac{0}{23^7} \] ### Step 5: Calculate the final result Since the numerator is 0, the entire fraction becomes: \[ a_7 = 0 \] Thus, the final answer is: \[ \boxed{0} \] ---
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    MODERN PUBLICATION|Exercise COMPETITION FILE|21 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise Chapter Test|11 Videos
  • SETS

    MODERN PUBLICATION|Exercise CHAPTER TEST 1|12 Videos

Similar Questions

Explore conceptually related problems

Find the term indicated in each case: (i) a_(n)=(n^(2))/(2^(n)):a_(7) (ii) a_(n)=(n(n-2))/(n-3),a_(20) (iii) a_(n)=[(1+(-1)^(n))/2 3^(n)],a_(7)

If a_(n+1)=(1)/(1-a_(n))" for " n ge 1 and a_(3)=a_(1)," then "(a_(2022))^(2022) equals

B={a_(n):n in N,a_(n)+1=2a_(n) and a_(1)=3}

If quad 1,a_(1)=3 and a_(n)^(2)-a_(n-1)*a_(n+1)=(-1)^(n) Find a_(3).

If (1^(2)-a_(1))+(2^(2)-a_(2))+(3^(2)-a_(3))+…..+(n^(2)-a_(n))=(1)/(3)n(n^(2)-1) , then the value of a_(7) is

If a_(n+1)=(1)/(1-a_(n)) for n>=1 and a_(3)=a_(1) then find the value of (a_(2001))^(2001)

If n^(th) terms of the sequence {a_(n)} where a_(n)=(-1)^(n-1)5^(n+1) , find a_(1),a_(2) , and a_(3) is

If a_(1),a_(2),a_(3), . . .,a_(n) are non-zero real numbers such that (a_(1)^(2)+a_(2)^(2)+ . .. +a_(n-1).^(2))(a_(2)^(2)+a_(3)^(2)+ . . .+a_(n)^(2))le(a_(1)a_(2)+a_(2)a_(3)+ . . . +a_(n-1)a_(n))^(2)" then", a_(1),a_(2), . . . .a_(n) are in

If a_(n)=(1)/(n+1)+1 then find the vaue of a_(1)+a_(3)+a_(5)