Home
Class 11
MATHS
If (1)/(lfloor8) + (1)/(lfloor9) = (x)/(...

If `(1)/(lfloor8) + (1)/(lfloor9) = (x)/(lfloor10)` , then x is equal to :

A

10

B

20

C

9

D

100

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{1}{\lfloor 8! \rfloor} + \frac{1}{\lfloor 9! \rfloor} = \frac{x}{\lfloor 10! \rfloor}\), we first need to understand the factorial notation and then manipulate the equation to find the value of \(x\). ### Step-by-step Solution: 1. **Understand Factorials**: - The factorial of a number \(n\), denoted as \(n!\), is the product of all positive integers up to \(n\). - For example: - \(8! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8\) - \(9! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9\) - \(10! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10\) 2. **Rewrite the Equation**: - The equation can be rewritten as: \[ \frac{1}{8!} + \frac{1}{9!} = \frac{x}{10!} \] 3. **Find a Common Denominator**: - The common denominator for the left side is \(9!\): \[ \frac{9!}{8! \cdot 9!} + \frac{8!}{9! \cdot 9!} = \frac{9! + 1}{9!} \] - Therefore, we can rewrite the left side as: \[ \frac{9! + 1}{9!} \] 4. **Express \(10!\) in Terms of \(9!\)**: - We know that \(10! = 10 \times 9!\). 5. **Substituting Back into the Equation**: - Now, substituting back into the equation gives: \[ \frac{9! + 1}{9!} = \frac{x}{10 \times 9!} \] 6. **Cross-Multiply**: - Cross-multiplying gives: \[ (9! + 1) \cdot 10 = x \] 7. **Calculate \(x\)**: - We can simplify this to: \[ x = 10 \cdot 9! + 10 \] - Since \(9! = 362880\), we can calculate: \[ x = 10 \cdot 362880 + 10 = 3628800 + 10 = 3628810 \] 8. **Final Value of \(x\)**: - Therefore, the value of \(x\) is: \[ x = 3628810 \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - B|8 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - C|8 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise CHAPTER TEST 14|12 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos