Home
Class 11
MATHS
underset(x to 0)(lim) (1-cos x)/(x) is :...

`underset(x to 0)(lim) (1-cos x)/(x)` is :

A

0

B

1

C

`(1)/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit as \( x \) approaches \( 0 \) for the expression \( \frac{1 - \cos x}{x} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{x \to 0} \frac{1 - \cos x}{x} \] ### Step 2: Multiply by the conjugate To simplify the expression, we can multiply the numerator and the denominator by \( 1 + \cos x \): \[ \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x(1 + \cos x)} \] ### Step 3: Simplify the numerator Using the identity \( 1 - \cos^2 x = \sin^2 x \), we can rewrite the numerator: \[ \lim_{x \to 0} \frac{\sin^2 x}{x(1 + \cos x)} \] ### Step 4: Split the limit We can separate the limit into two parts: \[ \lim_{x \to 0} \left( \frac{\sin^2 x}{x} \cdot \frac{1}{1 + \cos x} \right) \] ### Step 5: Evaluate the first limit Using the standard limit \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \), we can express \( \sin^2 x \) as: \[ \lim_{x \to 0} \left( \frac{\sin x}{x} \cdot \sin x \right) = 1 \cdot \lim_{x \to 0} \sin x \] As \( x \to 0 \), \( \sin x \to 0 \), so: \[ \lim_{x \to 0} \sin^2 x = 0 \] ### Step 6: Evaluate the second limit Now we evaluate the second part: \[ \lim_{x \to 0} \frac{1}{1 + \cos x} \] As \( x \to 0 \), \( \cos x \to 1 \), thus: \[ \lim_{x \to 0} \frac{1}{1 + \cos x} = \frac{1}{2} \] ### Step 7: Combine the limits Now we can combine the results: \[ \lim_{x \to 0} \frac{\sin^2 x}{x} \cdot \lim_{x \to 0} \frac{1}{1 + \cos x} = 0 \cdot \frac{1}{2} = 0 \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to 0} \frac{1 - \cos x}{x} = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - B|8 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - C|8 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise CHAPTER TEST 14|12 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the limits: (a) underset(x to 0)lim (1-cos x)/(x^2) (b) underset(x to 0)lim (tanx-sinx)/(x^(3)) (c ) underset(x to 1)lim ""(cos (pix//2))/(1-x)

f'(x) = |{:(cos x , x , 1),(2sin x,x^(2),2x),(tan x, x,1):}| . The value of underset(x rarr 0)(lim) (f(x))/(x) is equal to

underset(x to 0)lim (e^(x^(2))-cos x)/(sin^(2) x) is equal to :

underset(x to oo)lim (cos""2/x)^(x^2)=

Value of underset(x to 0)lim (a^(sin x)-1)/(sin x) is

underset(x to 1)lim (sqrt(1-cos 2(x-1)))/(x-1)

Evaluate underset(x to pi/4)lim (1-sin 2x)/(1+cos 4x)