Home
Class 11
MATHS
sin 70^(@)cos 10^(@) - cos 70^(@) sin...

sin `70^(@)cos 10^(@) - cos 70^(@) sin 10^(@) = ` _________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin 70^\circ \cos 10^\circ - \cos 70^\circ \sin 10^\circ \), we can use the sine subtraction formula. ### Step-by-step Solution: 1. **Identify the Sine Subtraction Formula**: The sine subtraction formula states that: \[ \sin(A - B) = \sin A \cos B - \cos A \sin B \] Here, we can identify \( A = 70^\circ \) and \( B = 10^\circ \). 2. **Apply the Formula**: Substitute \( A \) and \( B \) into the formula: \[ \sin(70^\circ - 10^\circ) = \sin 70^\circ \cos 10^\circ - \cos 70^\circ \sin 10^\circ \] This simplifies to: \[ \sin 60^\circ \] 3. **Calculate \( \sin 60^\circ \)**: We know from trigonometric values that: \[ \sin 60^\circ = \frac{\sqrt{3}}{2} \] 4. **Final Answer**: Therefore, the value of \( \sin 70^\circ \cos 10^\circ - \cos 70^\circ \sin 10^\circ \) is: \[ \frac{\sqrt{3}}{2} \] ### Summary: The expression simplifies to \( \frac{\sqrt{3}}{2} \).
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - B|8 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - C|8 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise CHAPTER TEST 14|12 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

(sin 70^(@) + cos 40^(@))/(cos 70^(@) + sin 40^(@))=

cos70^(@)+sin40^(@)=

(sin70^(@)+cos40^(@))/(cos70^(@)+sin40^(@))

(sin70^(@)+cos40^(@))/(cos70^(@)+sin40^(@))=?

(sin70^(@)+cos40^(@))/(cos70^(@)+sin40^(@))=

(sin70^(@)+cos40^(@))/(cos70^(@)+sin40^(@))=

sin50^(@)-sin70^(@)+sin10^(@)=?

cos 10^(@) cos 30^(@) cos 50^(@) cos 70^(@) =(3)/(16)

sin50 ^ (@) - sin70 ^ (@) + sin10 ^ (@) = 0