Home
Class 11
MATHS
Show that a real value of x will satisfy...

Show that a real value of `x` will satisfy hte equation `(1-i x)//(1+i x)=a-i b` if `a^2+b^2=1,w h e r ea ,b` real.

Promotional Banner

Topper's Solved these Questions

  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - C|8 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise CHAPTER TEST 14|12 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Show that a real value of x will satisfy the equation (1-ix)/(1+ix)=a-ib if a^(2)+b^(2)=1, wherea,breal.

Show that a real value of x will satisfy the equation (1-ix)/(1+ix)=a-ibquad if a^(2)+b^(2)=1 ,when a,b are real.

A real value of x satisfies the equation (3-4i x)/(3+4i x)=a-i b(a , b in RR), if a^2+b^2= a. 1 b. -1 c. 2 d. -2

Find the real values of x and y which satisfy the equation (3+i)x+(1-2i)y+7i=0

The sum of all the real values of x satisfying the equation 2^((x-1)(x^(2)+5x-50))=1 is

The relation between the real numbers a and b ,which satisfy the equation (1-ix)/(1+ix)=a-ib, for some real value of x, is

The set of real values of x satisfying ||x-1|-1|le 1 , is

Find the real values of x and y,quad if quad :(1+i)(x+iy)=2-5i