Home
Class 11
MATHS
If f(x) = (1)/(2x-1) , x ne (1)/(2) , ...

If `f(x) = (1)/(2x-1) , x ne (1)/(2)` , then show that `: f(f(x)) = (2x-1)/(3-2x) , x ne (3)/(2)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - B|8 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise CHAPTER TEST 14|12 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If y = f(x) = (x+2)/(x-1) , x ne1 , then show that x = f(y) .

If y=f(x)=(x+1)/(2x+3), where x ne -(3)/(2) , show that: f(y)=(3x+4)/(8x+11) .

If f(x)=1/(2x+1),\ x!=-1/2,\ then show that f(f(x))=(2x+1)/(2x+3) , provided that x!=-3/2dot

If f(x)=(1+x)/(1-x), show that: f(2x)=(3f(x)-1)/(3-f(x)) .

If f(x)=x-(1)/(x), x ne 0 then f(x^(2)) equals.

If f(x)=(x+1)/(x-1), x ne 1 , find f(f(f(f(2)))))