Home
Class 11
MATHS
If tan (alpha + theta) = n tan(alpha - ...

If `tan (alpha + theta) = n tan(alpha - theta)` , show that :`(n + 1) sin 2 theta = (n - 1) sin 2alpha`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan(\alpha + \theta) = n \tan(\alpha - \theta) \) and show that \( (n + 1) \sin 2\theta = (n - 1) \sin 2\alpha \), we can follow these steps: ### Step 1: Write the given equation We start with the given equation: \[ \tan(\alpha + \theta) = n \tan(\alpha - \theta) \] ### Step 2: Use the tangent addition and subtraction formulas Using the tangent addition and subtraction formulas: \[ \tan(\alpha + \theta) = \frac{\tan \alpha + \tan \theta}{1 - \tan \alpha \tan \theta} \] \[ \tan(\alpha - \theta) = \frac{\tan \alpha - \tan \theta}{1 + \tan \alpha \tan \theta} \] Substituting these into the equation gives: \[ \frac{\tan \alpha + \tan \theta}{1 - \tan \alpha \tan \theta} = n \cdot \frac{\tan \alpha - \tan \theta}{1 + \tan \alpha \tan \theta} \] ### Step 3: Cross-multiply to eliminate the fractions Cross-multiplying yields: \[ (\tan \alpha + \tan \theta)(1 + \tan \alpha \tan \theta) = n(\tan \alpha - \tan \theta)(1 - \tan \alpha \tan \theta) \] ### Step 4: Expand both sides Expanding both sides results in: \[ \tan \alpha + \tan \theta + \tan \alpha \tan^2 \theta + \tan^2 \alpha \tan \theta = n(\tan \alpha - \tan \theta - n \tan \alpha \tan^2 \theta + n \tan^2 \alpha \tan \theta) \] ### Step 5: Rearranging the equation Rearranging terms leads to: \[ \tan \alpha + \tan \theta + \tan \alpha \tan^2 \theta + \tan^2 \alpha \tan \theta - n(\tan \alpha - \tan \theta - n \tan \alpha \tan^2 \theta + n \tan^2 \alpha \tan \theta) = 0 \] ### Step 6: Apply the componendo and dividendo rule Using the componendo and dividendo rule, we can simplify the equation: \[ \frac{1 + n}{1 - n} = \frac{\tan(\alpha - \theta) + \tan(\alpha + \theta)}{\tan(\alpha - \theta) - \tan(\alpha + \theta)} \] ### Step 7: Substitute the sine and cosine Substituting \( \tan \) in terms of sine and cosine: \[ \frac{1 + n}{1 - n} = \frac{\frac{\sin(\alpha - \theta)}{\cos(\alpha - \theta)} + \frac{\sin(\alpha + \theta)}{\cos(\alpha + \theta)}}{\frac{\sin(\alpha - \theta)}{\cos(\alpha - \theta)} - \frac{\sin(\alpha + \theta)}{\cos(\alpha + \theta)}} \] ### Step 8: Simplify the right-hand side This can be simplified to: \[ \frac{(1 + n) \sin 2\theta}{(1 - n) \sin 2\alpha} \] ### Step 9: Final rearrangement Finally, we rearrange to show: \[ (n + 1) \sin 2\theta = (n - 1) \sin 2\alpha \] ### Conclusion Thus, we have shown that: \[ (n + 1) \sin 2\theta = (n - 1) \sin 2\alpha \] Hence proved. ---
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - B|8 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise CHAPTER TEST 14|12 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If tan (alpha+theta)=n tan (alpha-theta) ,show that: (n+1)"sin" 2theta=(n-1) sin 2alpha

If tan(alpha+theta)=n tan(alpha-theta), show that (n+1)sin2 theta=(n-1)sin2 alpha.

If "tan"(alpha+theta)=n "tan"(alpha-theta) ,ahow that: (n+1)"sin"2 theta=(n-1)"sin"2alpha

If tan(alpha+beta)=n tan(alpha-beta) then show that (n+1)sin2 beta=(n-1)sin2 alpha

If tan(alpha+theta)=n tan(alpha-theta) then value of (n+1)/(n-1)=

If tan theta+sin theta=m and tan theta-sin theta=n

If tan theta=(tan alpha+tan beta)/(1+tan alpha tan beta) then show that sin2 theta=(sin2 alpha+sin2 beta)/(1+sin2 alpha sin2 beta)

Solution ( Principle & General Solution ) || General form ( tan theta = tan alpha, cos theta = cos alpha , sin theta = sin alpha)

(i) tan3 theta tan7 theta + 1 = 0 (ii) sin ^ (2) theta = sin ^ (2) alpha