Home
Class 11
MATHS
Evaluate : underset(x to 1)(lim) ((x+x^(...

Evaluate : `underset(x to 1)(lim) ((x+x^(2) + x^(3) +……….+x^(n)) -n)/(x-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 1} \frac{(x + x^2 + x^3 + \ldots + x^n) - n}{x - 1}, \] we can follow these steps: ### Step 1: Rewrite the Series The expression \(x + x^2 + x^3 + \ldots + x^n\) is a geometric series. The sum of a geometric series can be calculated using the formula: \[ S_n = \frac{a(1 - r^{n})}{1 - r}, \] where \(a\) is the first term and \(r\) is the common ratio. Here, \(a = x\) and \(r = x\), so: \[ S_n = \frac{x(1 - x^n)}{1 - x}. \] ### Step 2: Substitute the Series into the Limit Now we can substitute this sum into our limit: \[ \lim_{x \to 1} \frac{\left(\frac{x(1 - x^n)}{1 - x}\right) - n}{x - 1}. \] ### Step 3: Simplify the Expression This can be rewritten as: \[ \lim_{x \to 1} \frac{\frac{x(1 - x^n) - n(1 - x)}{1 - x}}{x - 1}. \] This simplifies to: \[ \lim_{x \to 1} \frac{x(1 - x^n) - n(1 - x)}{(x - 1)^2}. \] ### Step 4: Evaluate the Numerator Now we need to evaluate the numerator as \(x \to 1\): \[ x(1 - x^n) - n(1 - x). \] Substituting \(x = 1\): \[ 1(1 - 1^n) - n(1 - 1) = 0 - 0 = 0. \] ### Step 5: Apply L'Hôpital's Rule Since we have a \(0/0\) form, we can apply L'Hôpital's Rule. We differentiate the numerator and the denominator: 1. Differentiate the numerator: \[ \frac{d}{dx}[x(1 - x^n) - n(1 - x)] = (1 - x^n) + x(-nx^{n-1}) + n = 1 - nx^n + n. \] 2. Differentiate the denominator: \[ \frac{d}{dx}[(x - 1)^2] = 2(x - 1). \] ### Step 6: Re-evaluate the Limit Now we can evaluate the limit again: \[ \lim_{x \to 1} \frac{1 - nx^n + n}{2(x - 1)}. \] Substituting \(x = 1\): \[ \frac{1 - n + n}{2(0)} = \frac{1}{0}. \] ### Step 7: Final Evaluation Since we are still in a \(0/0\) form, we can apply L'Hôpital's Rule again or simplify further. However, we can also directly evaluate the limit by recognizing that the original expression represents the derivative of the sum at \(x = 1\). ### Conclusion The final result is: \[ \lim_{x \to 1} \frac{(x + x^2 + x^3 + \ldots + x^n) - n}{x - 1} = \frac{n(n + 1)}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - B|8 Videos
  • MATHEMATICAL REASONING

    MODERN PUBLICATION|Exercise CHAPTER TEST 14|12 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr1)((x+x^(2)+x^(3)++x^(n))-n)/(x-1)

lim_(xto1)(x+x^(4)+x^(9)+……….+x^(n^(2))-n)/(x-1) is

Find underset(x to oo)lim (1+1/x^2)^x

Evaluate underset(x to -oo)lim(sqrt(x^(2)+3x+1))/(2x+4)

Evaluate underset( x rarr oo )("lim") ( sqrt( 3x^(2) - 1) - sqrt( 2x ^(2) - 1))/( 4x + 3)

Evaluate lim_(xto1)(x+x^(2)+…….+x^(n)-n)/(x-1)

Evaluate: lim_underset(x rarr 0) (sqrt(1+x+x^(2)+x^(3))-1)/(x) .

(i) Let h (x) = underset(x to oo)lim(x^(2n) f(x) + g(x))/(1+x^(2n)) , find h(x) in terms of f(fx) and g(x) (ii) without using L Hospital rule or series expansion for e^(x) evaluate underset(x to 0) lim (e^(x) -1-x)/x^(2) (iii) underset(n to oo) lim [ e^(1/n)/n^(2) + 2 ((e^(1/n))^(2))/n^(2) + 3. ((e^(1/n))^(3))/n^(2)+.......+ n((e^(1/n))^(n))/n^(2)] (iv) underset(x to 0)lim[ (a sin x)/x ] + [ (b tan x)/x] Where a,b are inegers and [] denotes integral part. (v) underset(x to a)lim (sinx/sina)^(1/(x-a))